AWS Deep Learning Containers发布PyTorch Graviton EC2推理容器v1.16版本
2025-07-07 02:51:11作者:鲍丁臣Ursa
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像已经过优化,可以在AWS云环境中高效运行。DLC包含了主流深度学习框架如TensorFlow、PyTorch等的预安装版本,以及必要的依赖库和工具,帮助开发者快速部署深度学习应用而无需手动配置环境。
近日,AWS DLC项目发布了PyTorch Graviton EC2推理容器的新版本v1.16,该版本基于PyTorch 2.4.0框架,专门为使用Graviton处理器的EC2实例进行了优化。Graviton是AWS基于ARM架构自主研发的处理器系列,相比传统x86架构处理器,在性能和成本效益方面具有显著优势。
版本核心特性
此版本容器镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境,主要面向CPU推理场景。镜像中包含了PyTorch生态系统的完整组件:
- PyTorch核心框架2.4.0版本(CPU优化版)
- TorchVision 0.19.0(计算机视觉库)
- TorchAudio 2.4.0(音频处理库)
- TorchServe 0.12.0(模型服务框架)
- Torch Model Archiver 0.12.0(模型打包工具)
关键技术组件
容器内预装了丰富的Python依赖库,为深度学习推理任务提供了全面的支持:
- 数值计算:NumPy 1.26.4和SciPy 1.14.1提供了高效的数值计算能力
- 计算机视觉:OpenCV 4.10.0和Pillow 11.0.0支持图像处理任务
- 开发工具:Cython 3.0.11用于Python与C的混合编程,Ninja 1.11.1作为高效的构建系统
- AWS集成:boto3 1.35.54和awscli 1.35.20方便与AWS服务交互
在系统层面,容器包含了必要的开发工具链和运行时库,如GCC编译器套件(libgcc-10/11-dev)和C++标准库(libstdc++6)等,确保应用程序的兼容性和性能。
应用场景
这个专为Graviton处理器优化的PyTorch推理容器特别适合以下场景:
- 成本敏感型推理服务:Graviton实例通常比同级别x86实例成本更低,适合大规模部署
- 边缘计算:ARM架构的低功耗特性适合边缘设备部署
- 批处理推理:对延迟要求不高的离线推理任务
- 模型服务:结合TorchServe可以快速构建模型服务API
使用建议
对于考虑迁移到Graviton平台的用户,建议:
- 先进行性能基准测试,验证模型在ARM架构下的表现
- 检查自定义算子或扩展是否兼容ARM架构
- 利用TorchServe的模型归档功能简化部署流程
- 监控资源利用率,根据实际负载调整实例规格
这个版本的发布进一步丰富了AWS在ARM架构上的深度学习生态系统,为用户提供了更多选择,特别是在追求性价比的推理场景中。随着Graviton处理器性能的不断提升,基于ARM架构的深度学习解决方案将变得越来越有竞争力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19