GLM-4模型微调中的输出控制问题分析与解决方案
2025-06-03 18:16:51作者:庞眉杨Will
问题背景
在使用GLM-4模型进行微调训练时,开发者遇到了输出结果不可控的问题。具体场景是对天气预测任务进行微调,期望模型能够根据图片输入输出"会下雨"或"不会下雨"的简单答案。然而在实际应用中,模型有时会产生不符合预期的长文本输出,如"图片中天气晴朗,没有乌云..."等描述性内容。
问题分析
通过对训练过程的观察,可以总结出以下几个关键现象:
-
训练数据特点:使用了约600条训练样本,答案格式固定为"会下雨"或"不会下雨"两种简短形式。
-
训练曲线表现:
- 初始loss约为2.5
- 100步后loss降至0.3
- 150步后loss稳定在0.2左右
- 继续训练至2500步,loss降至0.2以下
-
推理效果异常:
- 训练步数较少时(loss=0.4),输出格式较为规范
- 训练步数较多时(loss=0.2),反而出现输出格式不规范现象
- 批量大小(batch size)设置对结果有影响,batch=4时效果不如batch=1
技术原因探究
-
过拟合风险:当训练样本较少(600条)而训练步数较多(2500步)时,模型容易记住训练数据的特定模式,导致在新样本上表现不稳定。
-
损失函数与模型行为:虽然loss值降低表明模型在训练集上的表现改善,但过低的loss(如0.1以下)可能意味着模型已经过度适应训练数据,失去了泛化能力。
-
批量大小影响:较大的batch size(如4)虽然可以提高训练稳定性,但在小数据集上可能导致模型收敛过快,难以学到更通用的模式。
-
采样策略:推理时使用随机采样(do_sample=True)会增加输出的多样性,但对于需要确定性输出的任务不利。
解决方案建议
-
数据层面:
- 增加训练数据量,理想情况下应达到1000-2000条
- 确保数据质量,特别是答案格式的一致性
- 可以考虑添加一些负样本,强化模型对输出格式的理解
-
训练策略:
- 控制训练步数,避免过度训练
- 监控验证集表现,使用早停机制
- 尝试不同的学习率和优化器设置
- 考虑使用LoRA等参数高效微调方法
-
推理设置:
- 使用贪婪采样(do_sample=False)确保输出确定性
- 设置适当的temperature参数控制输出随机性
- 可以通过后处理对输出进行规范化
-
模型选择:
- 对于简单分类任务,可以考虑使用较小的模型
- 或者添加特定的输出约束,强制模型按格式回答
实践建议
对于类似需要严格控制输出格式的任务,建议采取以下步骤:
- 先在小规模数据上进行快速实验,确定合适的训练参数
- 逐步增加数据量,观察模型表现变化
- 定期在验证集上测试,防止过拟合
- 对于生产环境,建议添加输出后处理模块确保格式统一
通过系统性的训练策略和适当的参数调整,可以有效解决GLM-4模型在微调过程中的输出控制问题,使其在实际应用中表现更加稳定可靠。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1