GLM-4模型微调中的输出控制问题分析与解决方案
2025-06-03 17:13:35作者:庞眉杨Will
问题背景
在使用GLM-4模型进行微调训练时,开发者遇到了输出结果不可控的问题。具体场景是对天气预测任务进行微调,期望模型能够根据图片输入输出"会下雨"或"不会下雨"的简单答案。然而在实际应用中,模型有时会产生不符合预期的长文本输出,如"图片中天气晴朗,没有乌云..."等描述性内容。
问题分析
通过对训练过程的观察,可以总结出以下几个关键现象:
-
训练数据特点:使用了约600条训练样本,答案格式固定为"会下雨"或"不会下雨"两种简短形式。
-
训练曲线表现:
- 初始loss约为2.5
- 100步后loss降至0.3
- 150步后loss稳定在0.2左右
- 继续训练至2500步,loss降至0.2以下
-
推理效果异常:
- 训练步数较少时(loss=0.4),输出格式较为规范
- 训练步数较多时(loss=0.2),反而出现输出格式不规范现象
- 批量大小(batch size)设置对结果有影响,batch=4时效果不如batch=1
技术原因探究
-
过拟合风险:当训练样本较少(600条)而训练步数较多(2500步)时,模型容易记住训练数据的特定模式,导致在新样本上表现不稳定。
-
损失函数与模型行为:虽然loss值降低表明模型在训练集上的表现改善,但过低的loss(如0.1以下)可能意味着模型已经过度适应训练数据,失去了泛化能力。
-
批量大小影响:较大的batch size(如4)虽然可以提高训练稳定性,但在小数据集上可能导致模型收敛过快,难以学到更通用的模式。
-
采样策略:推理时使用随机采样(do_sample=True)会增加输出的多样性,但对于需要确定性输出的任务不利。
解决方案建议
-
数据层面:
- 增加训练数据量,理想情况下应达到1000-2000条
- 确保数据质量,特别是答案格式的一致性
- 可以考虑添加一些负样本,强化模型对输出格式的理解
-
训练策略:
- 控制训练步数,避免过度训练
- 监控验证集表现,使用早停机制
- 尝试不同的学习率和优化器设置
- 考虑使用LoRA等参数高效微调方法
-
推理设置:
- 使用贪婪采样(do_sample=False)确保输出确定性
- 设置适当的temperature参数控制输出随机性
- 可以通过后处理对输出进行规范化
-
模型选择:
- 对于简单分类任务,可以考虑使用较小的模型
- 或者添加特定的输出约束,强制模型按格式回答
实践建议
对于类似需要严格控制输出格式的任务,建议采取以下步骤:
- 先在小规模数据上进行快速实验,确定合适的训练参数
- 逐步增加数据量,观察模型表现变化
- 定期在验证集上测试,防止过拟合
- 对于生产环境,建议添加输出后处理模块确保格式统一
通过系统性的训练策略和适当的参数调整,可以有效解决GLM-4模型在微调过程中的输出控制问题,使其在实际应用中表现更加稳定可靠。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133