Ragas项目中本地化LLM测试集生成器的使用问题分析
2025-05-26 14:28:40作者:宣利权Counsellor
问题背景
在使用Ragas项目的TestsetGenerator功能时,当尝试在本地环境中运行基于Qwen-72B-Chat和BGE-M3模型的测试集生成器时,系统会意外尝试连接OpenAI的API服务,导致连接超时错误。这种现象出现在即使明确指定了本地模型和嵌入模型的情况下。
问题根源分析
经过深入分析,发现问题出在Ragas测试集生成器的初始化过程中。当用户不提供自定义的文档存储(docstore)时,系统会默认使用Langchain的TokenTextSplitter作为文本分割器。这个分割器内部默认依赖于GPT-2的tokenizer实现,而该实现会尝试从微软Azure存储服务下载必要的词汇表文件。
技术细节解析
TokenTextSplitter是Langchain中基于token数量进行文本分割的工具类。其核心依赖tiktoken库,该库默认会尝试从网络获取以下资源文件:
- 词汇BPE文件
- 编码器JSON文件
这种设计虽然对使用OpenAI服务的用户很方便,但对于完全本地化的部署环境就造成了不必要的网络依赖。
解决方案
方案一:使用自定义文档存储
最彻底的解决方案是预先构建完整的文档存储组件,避免系统使用默认的TokenTextSplitter。具体实现步骤如下:
- 选择合适的文本分割器:推荐使用RecursiveCharacterTextSplitter,它基于字符而非token,无需网络连接
- 配置嵌入模型:使用本地HuggingFace嵌入模型
- 创建关键短语提取器:使用本地LLM模型
- 组装完整文档存储组件
方案二:修改默认分割器行为
对于需要保持TokenTextSplitter功能的场景,可以通过以下方式解决:
- 预先下载所需的词汇文件到本地
- 修改tiktoken的默认文件获取逻辑,使其从本地读取
- 在环境变量中指定本地文件路径
最佳实践建议
对于完全离线的Ragas部署环境,建议采用以下架构设计:
- 文本处理层:使用不依赖网络资源的文本分割器
- 模型层:确保所有模型组件都有完整的本地实现
- 存储层:预先加载所有必要的资源文件
- 异常处理:增加对网络依赖的检测和友好提示
总结
这个问题揭示了在构建基于大语言模型的本地化应用时需要注意的依赖关系问题。通过深入理解框架内部实现机制,开发者可以更好地控制应用行为,确保在受限环境中也能稳定运行。Ragas作为一个评估框架,其灵活性允许用户通过适当配置适应各种部署环境。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
661