Ragas项目中本地化LLM测试集生成器的使用问题分析
2025-05-26 14:28:40作者:宣利权Counsellor
问题背景
在使用Ragas项目的TestsetGenerator功能时,当尝试在本地环境中运行基于Qwen-72B-Chat和BGE-M3模型的测试集生成器时,系统会意外尝试连接OpenAI的API服务,导致连接超时错误。这种现象出现在即使明确指定了本地模型和嵌入模型的情况下。
问题根源分析
经过深入分析,发现问题出在Ragas测试集生成器的初始化过程中。当用户不提供自定义的文档存储(docstore)时,系统会默认使用Langchain的TokenTextSplitter作为文本分割器。这个分割器内部默认依赖于GPT-2的tokenizer实现,而该实现会尝试从微软Azure存储服务下载必要的词汇表文件。
技术细节解析
TokenTextSplitter是Langchain中基于token数量进行文本分割的工具类。其核心依赖tiktoken库,该库默认会尝试从网络获取以下资源文件:
- 词汇BPE文件
- 编码器JSON文件
这种设计虽然对使用OpenAI服务的用户很方便,但对于完全本地化的部署环境就造成了不必要的网络依赖。
解决方案
方案一:使用自定义文档存储
最彻底的解决方案是预先构建完整的文档存储组件,避免系统使用默认的TokenTextSplitter。具体实现步骤如下:
- 选择合适的文本分割器:推荐使用RecursiveCharacterTextSplitter,它基于字符而非token,无需网络连接
- 配置嵌入模型:使用本地HuggingFace嵌入模型
- 创建关键短语提取器:使用本地LLM模型
- 组装完整文档存储组件
方案二:修改默认分割器行为
对于需要保持TokenTextSplitter功能的场景,可以通过以下方式解决:
- 预先下载所需的词汇文件到本地
- 修改tiktoken的默认文件获取逻辑,使其从本地读取
- 在环境变量中指定本地文件路径
最佳实践建议
对于完全离线的Ragas部署环境,建议采用以下架构设计:
- 文本处理层:使用不依赖网络资源的文本分割器
- 模型层:确保所有模型组件都有完整的本地实现
- 存储层:预先加载所有必要的资源文件
- 异常处理:增加对网络依赖的检测和友好提示
总结
这个问题揭示了在构建基于大语言模型的本地化应用时需要注意的依赖关系问题。通过深入理解框架内部实现机制,开发者可以更好地控制应用行为,确保在受限环境中也能稳定运行。Ragas作为一个评估框架,其灵活性允许用户通过适当配置适应各种部署环境。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
819
391
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
134
49
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
555
110