Ragas项目中本地化LLM测试集生成器的使用问题分析
2025-05-26 16:47:00作者:宣利权Counsellor
问题背景
在使用Ragas项目的TestsetGenerator功能时,当尝试在本地环境中运行基于Qwen-72B-Chat和BGE-M3模型的测试集生成器时,系统会意外尝试连接OpenAI的API服务,导致连接超时错误。这种现象出现在即使明确指定了本地模型和嵌入模型的情况下。
问题根源分析
经过深入分析,发现问题出在Ragas测试集生成器的初始化过程中。当用户不提供自定义的文档存储(docstore)时,系统会默认使用Langchain的TokenTextSplitter作为文本分割器。这个分割器内部默认依赖于GPT-2的tokenizer实现,而该实现会尝试从微软Azure存储服务下载必要的词汇表文件。
技术细节解析
TokenTextSplitter是Langchain中基于token数量进行文本分割的工具类。其核心依赖tiktoken库,该库默认会尝试从网络获取以下资源文件:
- 词汇BPE文件
- 编码器JSON文件
这种设计虽然对使用OpenAI服务的用户很方便,但对于完全本地化的部署环境就造成了不必要的网络依赖。
解决方案
方案一:使用自定义文档存储
最彻底的解决方案是预先构建完整的文档存储组件,避免系统使用默认的TokenTextSplitter。具体实现步骤如下:
- 选择合适的文本分割器:推荐使用RecursiveCharacterTextSplitter,它基于字符而非token,无需网络连接
- 配置嵌入模型:使用本地HuggingFace嵌入模型
- 创建关键短语提取器:使用本地LLM模型
- 组装完整文档存储组件
方案二:修改默认分割器行为
对于需要保持TokenTextSplitter功能的场景,可以通过以下方式解决:
- 预先下载所需的词汇文件到本地
- 修改tiktoken的默认文件获取逻辑,使其从本地读取
- 在环境变量中指定本地文件路径
最佳实践建议
对于完全离线的Ragas部署环境,建议采用以下架构设计:
- 文本处理层:使用不依赖网络资源的文本分割器
- 模型层:确保所有模型组件都有完整的本地实现
- 存储层:预先加载所有必要的资源文件
- 异常处理:增加对网络依赖的检测和友好提示
总结
这个问题揭示了在构建基于大语言模型的本地化应用时需要注意的依赖关系问题。通过深入理解框架内部实现机制,开发者可以更好地控制应用行为,确保在受限环境中也能稳定运行。Ragas作为一个评估框架,其灵活性允许用户通过适当配置适应各种部署环境。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0315- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程页面空白问题的技术分析与解决方案6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
272
311

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
599
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3