dstack项目0.19.1版本发布:增强监控指标与关键修复
2025-06-27 03:17:55作者:裘旻烁
dstack是一个开源的机器学习工作流编排平台,它帮助数据科学家和机器学习工程师轻松地定义、运行和管理他们的工作流。通过dstack,用户可以专注于模型开发而无需担心底层基础设施的复杂性。
监控指标全面升级
在0.19.1版本中,dstack团队显著增强了系统的监控能力,新增了多项关键指标,这些指标可以通过Prometheus进行导出和分析。这些改进使得用户能够更全面地了解系统运行状况和资源使用情况。
运行状态指标
新增的运行状态指标让用户能够一目了然地掌握工作流的执行情况:
dstack_run_count_total:记录系统运行的工作流总数dstack_run_count_terminated_total:统计被终止的工作流数量dstack_run_count_failed_total:追踪失败的工作流数量dstack_run_count_done_total:记录成功完成的工作流数量
这些指标对于评估系统稳定性和工作流成功率非常有价值,特别是对于长期运行的机器学习任务。
任务资源使用指标
更令人兴奋的是新增的任务资源使用指标,这些指标提供了细粒度的资源监控:
- CPU相关指标:包括核心数使用情况和总CPU时间消耗
- 内存相关指标:涵盖了内存分配总量、实际使用量(含缓存)以及工作集内存使用量
这些资源指标对于优化工作流性能至关重要。例如,通过分析dstack_job_memory_working_set_bytes指标,用户可以识别内存泄漏问题;而dstack_job_cpu_time_seconds_total则有助于发现CPU密集型任务。
关键Bug修复
0.19.1版本修复了一个在0.19.0中引入的重要问题:容器中的默认工作目录被错误地设置为根目录(/)而非预期的/workflow目录。这个修复确保了文件路径的一致性,避免了因工作目录错误导致的文件访问问题。
技术实现细节
在底层实现上,dstack团队采用了高效的指标收集机制:
- 对于运行状态指标,系统在状态转换时进行原子更新
- 资源使用指标通过cgroups接口获取,确保低开销
- 所有指标都带有适当的标签(如用户、项目等),便于多维分析
这些监控指标的加入使得dstack在可观测性方面迈上了一个新台阶,为大规模机器学习工作流的管理提供了坚实的数据基础。
升级建议
对于正在使用dstack的用户,特别是那些:
- 需要监控系统资源使用情况
- 运行大规模或长时间工作流
- 希望分析工作流性能特征
强烈建议升级到0.19.1版本以利用这些新功能。升级过程简单,且不会影响现有工作流的运行。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134