Super-Gradients项目中YOLO_NAS_S模型训练与预测问题解析
2025-06-11 20:52:37作者:蔡丛锟
问题背景
在使用Super-Gradients框架中的YOLO_NAS_S模型进行自定义数据集训练时,开发者遇到了两个主要的技术问题:
- 训练过程中损失函数和验证指标出现大量零值,导致模型无法进行有效预测
- 修改数据预处理方式后,又出现了关于整数类型无法调用sqrt方法的类型错误
问题一:训练损失异常分析
现象表现
在训练过程中,损失函数的多个组成部分(特别是loss_iou和loss_dfl)持续保持为零值,导致模型无法学习有效的检测能力。具体表现为:
- 分类损失(loss_cls)虽有数值但迅速下降
- IOU损失和DFL损失始终为零
- 验证集上的各项指标同样异常
可能原因分析
- 数据预处理问题:原始数据已经进行了归一化处理,而模型内部可能再次进行了归一化,导致数值范围异常
- 标签格式问题:虽然开发者确认了标签格式为YOLO格式(class x_center y_center width height),但可能存在数值范围或编码问题
- 损失函数配置:PPYoloELoss的静态分配器(static_assigner)设置可能不适合当前数据集特性
解决方案验证
开发者尝试了以下改进措施:
- 修改数据预处理流程,将归一化操作移至数据集类内部处理
- 检查并确保标签文件中的坐标和尺寸值在合理范围内(0-1之间)
- 调整损失函数参数,如尝试关闭静态分配器(use_static_assigner=False)
问题二:预测时类型错误分析
错误现象
在解决第一个问题后,模型预测时出现类型错误:
AttributeError: 'int' object has no attribute 'sqrt'
TypeError: loop of ufunc does not support argument 0 of type int which has no callable sqrt method
根本原因
该错误发生在可视化预测结果时,具体在计算边界框对角线长度时:
diag_length = np.sqrt(bbox_width**2 + bbox_height**2)
问题根源在于边界框的宽度(bbox_width)或高度(bbox_height)被错误地传递为Python整数类型,而非NumPy数值类型或浮点数。
解决方案建议
- 数据类型转换:在数据预处理阶段确保所有边界框坐标转换为浮点类型
- 数值范围检查:验证边界框坐标是否在预期范围内(0-1或像素值范围)
- 异常处理:在可视化代码中添加类型检查和转换逻辑
最佳实践建议
-
数据预处理流程:
- 推荐使用框架提供的数据增强和归一化方法
- 避免在数据准备阶段进行预归一化
- 确保图像和标签同步处理
-
模型训练配置:
- 对于小数据集,可以尝试降低学习率
- 考虑使用更简单的损失函数配置进行初步验证
- 启用EMA(指数移动平均)通常有助于稳定训练
-
调试技巧:
- 使用可视化回调验证数据加载是否正确
- 在训练前对单个批次进行前向传播测试
- 逐步增加模型复杂度,从简单配置开始
总结
在使用Super-Gradients框架训练自定义目标检测模型时,数据预处理和配置参数的合理性至关重要。开发者应当特别注意:
- 数据格式和数值范围的正确性
- 损失函数配置与数据特性的匹配度
- 训练过程中的监控和调试手段
通过系统性地验证数据流程和模型配置,可以有效避免类似训练异常和预测错误的问题。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26