Darts库中时间序列列表的逆缩放问题解析与解决方案
2025-05-27 08:22:56作者:江焘钦
背景介绍
在时间序列分析领域,数据预处理是一个关键步骤。Darts作为一个强大的时间序列预测库,提供了Scaler对象用于数据的标准化处理。然而,当处理多个长度不等的时间序列时,特别是在使用historical_forecasts方法后,现有的逆缩放(inverse scaling)功能存在一些局限性。
问题描述
当Scaler对象在时间序列列表(如[A, B, C])上训练后,它期望接收相同结构的输入进行逆变换。但在实际应用中,historical_forecasts方法可能返回不规则的预测结果列表,例如:
- 序列A的预测结果:[A_F1, A_F2, A_F3]
- 序列B的预测结果:[B_F1, B_F2]
- 序列C的预测结果:[C_F1, C_F2, C_F3]
这种不规则结构导致无法直接使用Scaler进行逆变换,因为Scaler期望接收的是对齐的预测结果(如[A_FX, B_FX, C_FX])。
技术挑战
- 数据结构不匹配:预测结果的结构与Scaler期望的输入格式不一致
- 长度不一致处理:不同时间序列可能产生不同数量的预测点
- 保持数据完整性:在转换过程中需要确保不丢失任何预测结果
解决方案
我们提出了一种结构转换方法来解决这个问题:
- 数据重组:将不规则的预测结果列表转换为Scaler可接受的格式
- 分批处理:对重组后的数据进行分批逆变换
- 结果还原:将逆变换后的数据恢复为原始结构
具体实现步骤:
- 首先确定最大预测长度(max_length)
- 创建max_length个批次,每个批次包含:
- 第1批:[A_F1, B_F1, C_F1]
- 第2批:[A_F2, B_F2, C_F2]
- 第3批:[A_F3, None, C_F3] (用None填充缺失项)
- 对每个有效批次应用逆变换
- 将结果重新组装为原始结构
实现考虑
- 填充处理:对于不完整的批次,需要合理处理缺失值
- 性能优化:批量处理可以提高计算效率
- API设计:保持与现有Scaler接口的一致性
应用价值
这一改进使得:
- 用户可以更方便地处理多个时间序列的预测结果
- 保持了数据预处理流程的完整性
- 提高了库的易用性和灵活性
总结
Darts库中这一改进解决了多时间序列预测结果逆缩放的关键问题,使得数据后处理流程更加顺畅。这种结构转换方法不仅适用于当前场景,也为处理其他类似的不规则数据结构提供了参考思路。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
262
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
77