Fury项目中的ByteBuffer与MemoryBuffer集成优化
背景介绍
Fury是一个高性能的Java序列化框架,在分布式系统和消息中间件场景中有着广泛应用。在实际生产环境中,Fury经常需要与Kafka等消息队列系统集成,而Kafka的Deserializer接口设计直接影响了Fury的使用体验。
问题分析
Kafka的Deserializer接口提供了两种反序列化方法签名,其中一种接受ByteBuffer作为输入参数。然而,当前Fury的Encoder和RowEncoder类在处理ByteBuffer时存在以下两个问题:
-
不必要的内存拷贝:当使用
Encoder.decode(byte[])方法处理ByteBuffer时,需要先将ByteBuffer内容拷贝到byte数组中,这造成了额外的内存开销和性能损耗。 -
重复的低级代码:使用
RowEncoder.fromRow(BinaryRow row)方法时,开发者需要手动处理MemoryBuffer的包装、schema校验等底层细节,这些代码在多个应用中会重复出现。
解决方案
针对上述问题,Fury项目团队提出了优雅的解决方案:
-
新增MemoryBuffer支持:为Encoder类添加
decode(MemoryBuffer buf)方法,直接处理MemoryBuffer输入,避免中间转换带来的性能损耗。 -
简化RowEncoder使用:为RowEncoder类添加
fromRow(MemoryBuffer buf)方法,封装底层细节,提供更简洁的API。 -
考虑序列化优化:同时考虑添加
Encoder.encodeTo(T obj, MemoryBuffer buf)方法,优化序列化过程,避免中间byte数组的生成。
技术实现细节
在实现上,Fury利用了MemoryBuffer与ByteBuffer的良好互操作性。MemoryUtils工具类提供了wrap方法,可以高效地将ByteBuffer转换为MemoryBuffer,而无需数据拷贝。
对于schema校验等核心逻辑,Fury保持了原有的严格检查机制,包括:
- 读取并验证peer schema hash
- 与本地schema hash进行比对
- 在schema不匹配时抛出明确的异常信息
实际应用价值
这一优化为Kafka集成场景带来了显著改进:
-
性能提升:消除了ByteBuffer到byte[]的拷贝操作,降低了内存使用和CPU消耗。
-
代码简化:隐藏了底层细节,开发者可以更专注于业务逻辑。
-
一致性增强:通过框架提供的标准实现,避免了各应用自行实现可能引入的错误。
总结
Fury项目对ByteBuffer/MemoryBuffer集成的优化,体现了框架设计中对实际应用场景的深入思考。这种优化不仅提升了性能,还改善了API的易用性,使得Fury在消息队列集成等场景中能够发挥更好的作用。对于正在评估或使用Fury的开发者来说,这一改进将显著简化集成工作并提升系统性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00