Apache Fury反序列化InputStream问题分析与解决方案
2025-06-25 13:18:47作者:昌雅子Ethen
Apache Fury作为一个高性能的序列化框架,在Java生态中展现出优异的性能表现。然而在实际使用过程中,开发者可能会遇到从InputStream反序列化数据失败的问题,本文将深入分析问题根源并提供解决方案。
问题现象
当开发者尝试使用Fury框架从ByteArrayInputStream或其他InputStream反序列化数据时,可能会遇到两种异常情况:
- 使用ByteArrayInputStream时抛出UnsupportedOperationException
- 使用普通InputStream时抛出IllegalArgumentException
根本原因
经过分析,这个问题源于Fury框架对序列化/反序列化方法使用的特殊约定。Fury框架内部存在两种不同的序列化方式:
- 直接序列化为字节数组:fury.serializeJavaObject(object)
- 序列化到输出流:fury.serializeJavaObject(outputstream, object)
关键区别在于,当使用输出流序列化时,Fury会自动在数据前添加长度前缀信息,而直接序列化为字节数组时则不会包含这个前缀。这种设计差异导致了反序列化时的兼容性问题。
解决方案
方案一:保持序列化/反序列化方式一致
最规范的解决方案是确保序列化和反序列化使用匹配的方法对:
// 序列化时使用输出流
ByteArrayOutputStream out = new ByteArrayOutputStream();
fury.serializeJavaObject(out, object);
// 反序列化时使用输入流
ByteArrayInputStream in = new ByteArrayInputStream(out.toByteArray());
Object result = fury.deserializeJavaObject(in, Object.class);
方案二:手动处理长度前缀
如果已经存在直接序列化的数据,可以手动添加长度前缀:
byte[] data = fury.serializeJavaObject(object);
ByteBuffer buffer = ByteBuffer.allocate(8 + data.length);
buffer.putLong(data.length);
buffer.put(data);
// 反序列化
ByteArrayInputStream in = new ByteArrayInputStream(buffer.array());
Object result = fury.deserializeJavaObject(in, Object.class);
性能优化建议
对于需要高性能的场景,特别是处理大对象时,可以考虑以下优化方向:
- 使用FileChannel结合ByteBuffer实现零拷贝
- 预分配固定大小的缓冲区减少内存分配开销
- 对于已知大小的数据,可以直接使用字节数组反序列化
框架未来改进
Fury社区已经意识到这个问题,并计划在后续版本中改进:
- 实现原生的流式反序列化支持
- 优化MemoryBuffer的设计以支持多种数据源
- 完善文档说明不同序列化方法的区别
总结
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178