Carla_iLQR_MPC: 在Carla模拟器中基于iLQR的实时MPC实现教程
项目介绍
Carla_iLQR_MPC 是一个开源项目,它在Carla仿真环境中实现了基于迭代线性二次调节器(iLQR)的实时模型预测控制(MPC)算法。本项目源于ES 202课程项目,旨在通过结合系统识别和模型驱动的方法提高自动驾驶系统的样本效率。作者Yukun Xia及其团队选择iLQR是因为其在模型已知时能够提供高效且鲁棒的路径规划和控制能力,尽管Carla本身并不直接提供车辆动力学模型,该项目通过数据收集与拟合建立了一个可微分的动力学模型。
项目快速启动
要快速启动此项目,首先确保你的开发环境已安装了Python及Carla SDK。接下来的步骤概括如下:
步骤1: 环境准备
安装必要的依赖项,包括但不限于JAX,用于自动微分,以及Carla的相关Python API。
pip install -r requirements.txt
步骤2: 下载并配置Carla
下载Carla仿真器,并设置相应的环境变量或确保脚本能找到Carla的安装路径。
步骤3: 运行示例
在成功配置好环境后,你可以运行项目来测试基本功能。以下命令将启动一个简单的场景,演示MPC控制器如何工作:
python main.py
请注意,你需要根据你的Carla服务器地址和端口调整配置(如需)。
应用案例和最佳实践
-
纯追踪任务: 初始应用是让车辆执行纯追踪任务,即跟踪预定的参考路径。这作为测试iLQR控制性能的基础。
-
路线跟随: 进阶应用在于车辆能够依据Carla中的路点规划系统,实现复杂路线的自动跟随。关键在于动态地调整成本函数以适应路况变化,并处理约束条件,比如速度限制和道路边界。
典型生态项目
虽然这个项目自身便是专注于自动驾驶控制策略的一个具体实例,它可以融入更广泛的自动驾驶研究与开发生态中。例如,结合使用ROS(Robot Operating System)进行传感器融合、或者与SLAM(Simultaneous Localization and Mapping)技术结合来增强车辆的自主导航能力。
项目利用Carla的开放API,鼓励开发者探索更多应用场景,如障碍物避障算法的集成、地形响应控制(考虑坡度影响)等,进一步推动自动驾驶技术的发展。
以上就是基于Carla_iLQR_MPC项目的简明教程,希望对您的自动驾驶系统开发有所启发与帮助。请参考项目源码和文档获取更详细的信息和最新进展。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00