Sentence-Transformers项目中重复负样本对MNR损失函数的影响分析
2025-05-13 13:13:53作者:凤尚柏Louis
在基于Sentence-Transformers框架的大规模文本表示学习场景中,当使用多负样本排名损失(MNR Loss)进行训练时,一个值得关注的技术细节是训练批次(batch)内可能出现的重复负样本问题。本文将从原理层面分析这种现象的影响,并探讨解决方案。
问题背景
假设我们有以下数据配置:
- 语料库包含70,000条独特文本
- 通过数据增强生成200,000个{查询,语料}对
- 使用32k的大批量进行训练
在这种情况下,由于批大小(32k)远大于语料库规模(70k),根据鸽巢原理,每个训练批次中几乎必然会出现重复的语料文本。当这些重复文本作为其他查询的负样本时,就会产生重复负样本问题。
技术影响
重复负样本会对MNR损失函数产生两个主要影响:
-
梯度累积效应:传统实现中,每个负样本都会独立贡献梯度。当相同负样本多次出现时,其对应的梯度会被多次累积,可能导致模型更新方向出现偏差。
-
损失计算失真:MNR损失依赖于负样本的相对排名,重复负样本会人为增加某些负样本的"重要性",破坏损失函数的统计特性。
解决方案
Sentence-Transformers提供了两种应对策略:
1. 去重批次采样器
通过设置batch_sampler="no_duplicates"参数,可以确保:
训练配置 = SentenceTransformersTrainingArguments(
...,
batch_sampler="no_duplicates",
)
该采样器会动态构建不含重复文本的批次。其特点是:
- 保证每个批次内文本唯一性
- 可能牺牲部分训练效率(需要等待"完整"批次)
- 存在极少量样本可能被跳过的情况
2. 损失函数内处理
另一种思路是在损失计算层面对重复负样本进行特殊处理:
- 识别并合并重复负样本
- 调整对应的权重系数
- 需要额外的计算开销进行去重操作
实践建议
对于不同规模的数据集,建议采用不同策略:
- 小规模语料:优先使用去重批次采样器
- 超大规模语料:可考虑接受少量重复,或实现自定义损失函数
- 中等规模:需在训练效率和模型效果间权衡
理解这一机制对于构建高质量的句子嵌入模型至关重要,特别是在处理领域特定的小规模语料库时。通过合理配置,可以确保模型从负样本中学习到真正有区分度的特征。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355