GLM-4模型微调中的显存优化与问题排查实战
2025-06-03 19:57:28作者:房伟宁
引言
在大型语言模型的实际应用中,微调(Fine-tuning)是使预训练模型适应特定任务的关键步骤。本文将以GLM-4模型为例,深入探讨在单卡3090Ti环境下进行LoRA微调时遇到的显存溢出(OOM)问题及其解决方案,同时分享调试过程中发现的其他关键问题。
硬件环境与基础配置
本次微调实验环境为:
- 显卡:NVIDIA GeForce RTX 3090 Ti(24GB显存)
- 软件环境:WSL(Windows Subsystem for Linux)
- 深度学习框架:PyTorch 2.1.0
基础配置采用了LoRA(Low-Rank Adaptation)微调方法,这是一种参数高效的微调技术,主要配置参数包括:
- LoRA秩(r):8
- LoRA alpha:32
- Dropout率:0.1
- 学习率:5e-4
- 批量大小:1(训练)/4(评估)
问题现象与分析
初始OOM问题
在最初的微调尝试中,系统报告了CUDA显存不足的错误。错误信息显示:
- 显卡总容量:23.99GB
- 已使用显存:23.01GB(PyTorch分配)
- 尝试分配:12.00MB失败
这种现象在大型模型微调中较为常见,尤其是在单卡环境下处理较长序列(配置中max_input_length=512)时。
调试过程中的发现
在解决OOM问题的过程中,发现了另一个关键问题——训练过程中loss值始终为0。这通常表明模型没有正确学习,可能是数据处理环节出现了问题。
问题排查与解决方案
数据处理问题修复
通过深入调试,发现finetune.py
中的process_batch
函数存在逻辑错误:
原始代码:
new_input_ids = tokenizer.apply_chat_template([message], tokenize=True, return_dict=False)[2:]
修正后代码:
new_input_ids = tokenizer.apply_chat_template([message], tokenize=True, return_dict=False)[0][2:]
这个修正确保了输入ID被正确提取,解决了loss为0的问题。同样的修改也需要应用于process_batch_eval
函数。
显存优化策略
针对OOM问题,我们实施了以下优化措施:
-
精度设置:
- 在配置文件中明确启用BF16混合精度训练(
bf16: true
) - BF16相比FP32可减少约50%的显存占用,同时保持足够的数值精度
- 在配置文件中明确启用BF16混合精度训练(
-
批量大小调整:
- 保持训练批量大小为1,评估批量大小为4
- 在单卡环境下,这是较为保守但稳定的配置
-
DeepSpeed集成:
- 取消配置文件中
deepspeed
行的注释 - 使用Zero Stage 2优化策略,可显著减少显存占用
- 取消配置文件中
-
序列长度优化:
- 保持max_input_length=512和max_output_length=512
- 这是平衡模型能力和显存占用的合理值
经验总结与最佳实践
-
数据验证至关重要:
- 在正式训练前,应验证数据处理流程是否正确
- 检查
apply_chat_template
后的label部分是否被正确识别
-
显存监控:
- 使用
nvidia-smi
或PyTorch内存分析工具监控显存使用情况 - 关注显存碎片化问题,必要时设置
max_split_size_mb
- 使用
-
混合精度训练:
- 现代GPU(如3090Ti)对BF16有良好支持
- 确保硬件和软件栈都支持所选精度
-
分布式训练考量:
- 对于更大规模的微调任务,考虑多卡环境
- 注意不同显卡间的显存平衡
结论
通过系统的问题排查和优化,我们成功解决了GLM-4模型微调中的关键问题。这些经验不仅适用于GLM-4,也可为其他大型语言模型的微调提供参考。在实际应用中,开发者需要根据具体硬件条件和任务需求,灵活调整微调策略和参数配置。
记住,模型微调是一个需要耐心和细致的过程,合理的问题排查方法和系统的优化策略是成功的关键。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5