GLM-4模型微调中的显存优化与问题排查实战
2025-06-03 13:35:25作者:房伟宁
引言
在大型语言模型的实际应用中,微调(Fine-tuning)是使预训练模型适应特定任务的关键步骤。本文将以GLM-4模型为例,深入探讨在单卡3090Ti环境下进行LoRA微调时遇到的显存溢出(OOM)问题及其解决方案,同时分享调试过程中发现的其他关键问题。
硬件环境与基础配置
本次微调实验环境为:
- 显卡:NVIDIA GeForce RTX 3090 Ti(24GB显存)
- 软件环境:WSL(Windows Subsystem for Linux)
- 深度学习框架:PyTorch 2.1.0
基础配置采用了LoRA(Low-Rank Adaptation)微调方法,这是一种参数高效的微调技术,主要配置参数包括:
- LoRA秩(r):8
- LoRA alpha:32
- Dropout率:0.1
- 学习率:5e-4
- 批量大小:1(训练)/4(评估)
问题现象与分析
初始OOM问题
在最初的微调尝试中,系统报告了CUDA显存不足的错误。错误信息显示:
- 显卡总容量:23.99GB
- 已使用显存:23.01GB(PyTorch分配)
- 尝试分配:12.00MB失败
这种现象在大型模型微调中较为常见,尤其是在单卡环境下处理较长序列(配置中max_input_length=512)时。
调试过程中的发现
在解决OOM问题的过程中,发现了另一个关键问题——训练过程中loss值始终为0。这通常表明模型没有正确学习,可能是数据处理环节出现了问题。
问题排查与解决方案
数据处理问题修复
通过深入调试,发现finetune.py中的process_batch函数存在逻辑错误:
原始代码:
new_input_ids = tokenizer.apply_chat_template([message], tokenize=True, return_dict=False)[2:]
修正后代码:
new_input_ids = tokenizer.apply_chat_template([message], tokenize=True, return_dict=False)[0][2:]
这个修正确保了输入ID被正确提取,解决了loss为0的问题。同样的修改也需要应用于process_batch_eval函数。
显存优化策略
针对OOM问题,我们实施了以下优化措施:
-
精度设置:
- 在配置文件中明确启用BF16混合精度训练(
bf16: true) - BF16相比FP32可减少约50%的显存占用,同时保持足够的数值精度
- 在配置文件中明确启用BF16混合精度训练(
-
批量大小调整:
- 保持训练批量大小为1,评估批量大小为4
- 在单卡环境下,这是较为保守但稳定的配置
-
DeepSpeed集成:
- 取消配置文件中
deepspeed行的注释 - 使用Zero Stage 2优化策略,可显著减少显存占用
- 取消配置文件中
-
序列长度优化:
- 保持max_input_length=512和max_output_length=512
- 这是平衡模型能力和显存占用的合理值
经验总结与最佳实践
-
数据验证至关重要:
- 在正式训练前,应验证数据处理流程是否正确
- 检查
apply_chat_template后的label部分是否被正确识别
-
显存监控:
- 使用
nvidia-smi或PyTorch内存分析工具监控显存使用情况 - 关注显存碎片化问题,必要时设置
max_split_size_mb
- 使用
-
混合精度训练:
- 现代GPU(如3090Ti)对BF16有良好支持
- 确保硬件和软件栈都支持所选精度
-
分布式训练考量:
- 对于更大规模的微调任务,考虑多卡环境
- 注意不同显卡间的显存平衡
结论
通过系统的问题排查和优化,我们成功解决了GLM-4模型微调中的关键问题。这些经验不仅适用于GLM-4,也可为其他大型语言模型的微调提供参考。在实际应用中,开发者需要根据具体硬件条件和任务需求,灵活调整微调策略和参数配置。
记住,模型微调是一个需要耐心和细致的过程,合理的问题排查方法和系统的优化策略是成功的关键。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0100
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
447
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
239
100
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
451
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705