GLM-4模型微调中的显存优化与问题排查实战
2025-06-03 13:35:25作者:房伟宁
引言
在大型语言模型的实际应用中,微调(Fine-tuning)是使预训练模型适应特定任务的关键步骤。本文将以GLM-4模型为例,深入探讨在单卡3090Ti环境下进行LoRA微调时遇到的显存溢出(OOM)问题及其解决方案,同时分享调试过程中发现的其他关键问题。
硬件环境与基础配置
本次微调实验环境为:
- 显卡:NVIDIA GeForce RTX 3090 Ti(24GB显存)
- 软件环境:WSL(Windows Subsystem for Linux)
- 深度学习框架:PyTorch 2.1.0
基础配置采用了LoRA(Low-Rank Adaptation)微调方法,这是一种参数高效的微调技术,主要配置参数包括:
- LoRA秩(r):8
- LoRA alpha:32
- Dropout率:0.1
- 学习率:5e-4
- 批量大小:1(训练)/4(评估)
问题现象与分析
初始OOM问题
在最初的微调尝试中,系统报告了CUDA显存不足的错误。错误信息显示:
- 显卡总容量:23.99GB
- 已使用显存:23.01GB(PyTorch分配)
- 尝试分配:12.00MB失败
这种现象在大型模型微调中较为常见,尤其是在单卡环境下处理较长序列(配置中max_input_length=512)时。
调试过程中的发现
在解决OOM问题的过程中,发现了另一个关键问题——训练过程中loss值始终为0。这通常表明模型没有正确学习,可能是数据处理环节出现了问题。
问题排查与解决方案
数据处理问题修复
通过深入调试,发现finetune.py中的process_batch函数存在逻辑错误:
原始代码:
new_input_ids = tokenizer.apply_chat_template([message], tokenize=True, return_dict=False)[2:]
修正后代码:
new_input_ids = tokenizer.apply_chat_template([message], tokenize=True, return_dict=False)[0][2:]
这个修正确保了输入ID被正确提取,解决了loss为0的问题。同样的修改也需要应用于process_batch_eval函数。
显存优化策略
针对OOM问题,我们实施了以下优化措施:
-
精度设置:
- 在配置文件中明确启用BF16混合精度训练(
bf16: true) - BF16相比FP32可减少约50%的显存占用,同时保持足够的数值精度
- 在配置文件中明确启用BF16混合精度训练(
-
批量大小调整:
- 保持训练批量大小为1,评估批量大小为4
- 在单卡环境下,这是较为保守但稳定的配置
-
DeepSpeed集成:
- 取消配置文件中
deepspeed行的注释 - 使用Zero Stage 2优化策略,可显著减少显存占用
- 取消配置文件中
-
序列长度优化:
- 保持max_input_length=512和max_output_length=512
- 这是平衡模型能力和显存占用的合理值
经验总结与最佳实践
-
数据验证至关重要:
- 在正式训练前,应验证数据处理流程是否正确
- 检查
apply_chat_template后的label部分是否被正确识别
-
显存监控:
- 使用
nvidia-smi或PyTorch内存分析工具监控显存使用情况 - 关注显存碎片化问题,必要时设置
max_split_size_mb
- 使用
-
混合精度训练:
- 现代GPU(如3090Ti)对BF16有良好支持
- 确保硬件和软件栈都支持所选精度
-
分布式训练考量:
- 对于更大规模的微调任务,考虑多卡环境
- 注意不同显卡间的显存平衡
结论
通过系统的问题排查和优化,我们成功解决了GLM-4模型微调中的关键问题。这些经验不仅适用于GLM-4,也可为其他大型语言模型的微调提供参考。在实际应用中,开发者需要根据具体硬件条件和任务需求,灵活调整微调策略和参数配置。
记住,模型微调是一个需要耐心和细致的过程,合理的问题排查方法和系统的优化策略是成功的关键。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355