**深度学习在城市交通预测中的应用:DL-Traff-Graph使用手册**
2024-09-28 22:06:12作者:伍希望
本指南旨在帮助开发者快速理解并使用DL-Traff-Graph
项目,这是一个专为城市交通预测设计的基于图神经网络的模型集合。项目来源于CIKM 2021资源论文,提供了对网格化和图基础模型的基准测试。
1. 项目目录结构及介绍
.
├── METR-LA # 数据集之一,包含洛杉矶地区的交通流量数据
│ ├── metr-la.h5 # 特征文件
│ ├── adj_mx.pkl # 不对称道路邻接文件
│ └── W_metrla.csv # 对称道路邻接文件
├── PEMSBAY # 另一数据集,涵盖湾区的交通信息
│ ├── pems-bay.h5 # 特征文件
│ ├── adj_mx_bay.pkl # 不对称道路邻接文件
│ └── W_pemsbay.csv # 对称道路邻接文件
├── PEMSD7M # 第三个数据集,对应特定区域的详细交通数据
│ ├── V_228.csv # 特征文件
│ └── W_228.csv # 道路邻接关系文件
├── workMETRLA # 主程序文件夹,以METR-LA为例的处理逻辑
│ ├── parameter.py # 共享参数文件
│ ├── parameter_STGCN.py # STGCN模型特定参数
│ ├── STGCN.py # STGCN模型文件,用于调试和接口提供
│ └── pred_STGCN3.csv # 预测输出文件示例
├── workPEMSBAY # 类似的主程序文件夹,针对PEMSBAY数据集
├── workPEMSD7M # 同上,针对PEMSD7M数据集
├── requirements.txt # 项目依赖项(假设存在,未直接列出)
├── README.md # 项目说明文档
└── setup.py # 安装脚本(示例,实际项目中可能不存在)
2. 项目的启动文件介绍
示例:使用STGCN模型进行训练和预测(以METR-LA数据集为例)
-
训练与预测程序:
workMETRLA/pred_STGCN3.py
是主要的执行程序,用于模型的训练、预测和测试。 -
模型调试运行:你可以直接运行
STGCN.py
在特定GPU上调试模型(例如,GPU 1),通过命令python STGCN.py 1
。 -
完整流程启动:使用同样的Python命令但执行预测程序来完成整个训练和测试过程,如
python pred_STGCN3.py 1
。
3. 项目的配置文件介绍
- 共享参数文件:每个数据集对应的
work*/*/*.py
文件夹下有parameter.py
,它包含了所有模型共用的基础参数设置。 - 模型特定参数:例如
parameter_STGCN.py
提供了STGCN模型的特殊配置,优先于共享参数。
这些配置文件定义了模型训练的关键超参数,如学习率、批次大小、网络结构细节等。用户可以根据需要调整这些参数以优化模型性能或适应不同的实验需求。
安装与基本环境准备:
-
先决条件:确保你的系统已安装Ubuntu 20.04.2 LTS,Python 3.6及以上版本(推荐使用Anaconda环境)以及PyTorch 1.6.0+。
-
项目克隆与依赖安装:通过Git克隆项目,并使用pip安装必要的库,注意
torch-summary
的正确安装步骤,避免旧版引起的错误。
开始探索前,请仔细阅读项目内的README.md
,了解数据预处理和具体运行案例。这样,你就能够顺利地在你的环境中部署并测试DL-Traff-Graph
,利用其强大的功能进行城市交通预测分析。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp音乐播放器项目中的函数调用问题解析9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp 课程中关于角色与职责描述的语法优化建议
最新内容推荐
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
524

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

React Native鸿蒙化仓库
C++
182
264

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
364
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
736
105