**深度学习在城市交通预测中的应用:DL-Traff-Graph使用手册**
2024-09-28 14:53:11作者:伍希望
本指南旨在帮助开发者快速理解并使用DL-Traff-Graph项目,这是一个专为城市交通预测设计的基于图神经网络的模型集合。项目来源于CIKM 2021资源论文,提供了对网格化和图基础模型的基准测试。
1. 项目目录结构及介绍
.
├── METR-LA # 数据集之一,包含洛杉矶地区的交通流量数据
│ ├── metr-la.h5 # 特征文件
│ ├── adj_mx.pkl # 不对称道路邻接文件
│ └── W_metrla.csv # 对称道路邻接文件
├── PEMSBAY # 另一数据集,涵盖湾区的交通信息
│ ├── pems-bay.h5 # 特征文件
│ ├── adj_mx_bay.pkl # 不对称道路邻接文件
│ └── W_pemsbay.csv # 对称道路邻接文件
├── PEMSD7M # 第三个数据集,对应特定区域的详细交通数据
│ ├── V_228.csv # 特征文件
│ └── W_228.csv # 道路邻接关系文件
├── workMETRLA # 主程序文件夹,以METR-LA为例的处理逻辑
│ ├── parameter.py # 共享参数文件
│ ├── parameter_STGCN.py # STGCN模型特定参数
│ ├── STGCN.py # STGCN模型文件,用于调试和接口提供
│ └── pred_STGCN3.csv # 预测输出文件示例
├── workPEMSBAY # 类似的主程序文件夹,针对PEMSBAY数据集
├── workPEMSD7M # 同上,针对PEMSD7M数据集
├── requirements.txt # 项目依赖项(假设存在,未直接列出)
├── README.md # 项目说明文档
└── setup.py # 安装脚本(示例,实际项目中可能不存在)
2. 项目的启动文件介绍
示例:使用STGCN模型进行训练和预测(以METR-LA数据集为例)
-
训练与预测程序:
workMETRLA/pred_STGCN3.py是主要的执行程序,用于模型的训练、预测和测试。 -
模型调试运行:你可以直接运行
STGCN.py在特定GPU上调试模型(例如,GPU 1),通过命令python STGCN.py 1。 -
完整流程启动:使用同样的Python命令但执行预测程序来完成整个训练和测试过程,如
python pred_STGCN3.py 1。
3. 项目的配置文件介绍
- 共享参数文件:每个数据集对应的
work*/*/*.py文件夹下有parameter.py,它包含了所有模型共用的基础参数设置。 - 模型特定参数:例如
parameter_STGCN.py提供了STGCN模型的特殊配置,优先于共享参数。
这些配置文件定义了模型训练的关键超参数,如学习率、批次大小、网络结构细节等。用户可以根据需要调整这些参数以优化模型性能或适应不同的实验需求。
安装与基本环境准备:
-
先决条件:确保你的系统已安装Ubuntu 20.04.2 LTS,Python 3.6及以上版本(推荐使用Anaconda环境)以及PyTorch 1.6.0+。
-
项目克隆与依赖安装:通过Git克隆项目,并使用pip安装必要的库,注意
torch-summary的正确安装步骤,避免旧版引起的错误。
开始探索前,请仔细阅读项目内的README.md,了解数据预处理和具体运行案例。这样,你就能够顺利地在你的环境中部署并测试DL-Traff-Graph,利用其强大的功能进行城市交通预测分析。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878