**深度学习在城市交通预测中的应用:DL-Traff-Graph使用手册**
2024-09-28 02:12:46作者:伍希望
本指南旨在帮助开发者快速理解并使用DL-Traff-Graph
项目,这是一个专为城市交通预测设计的基于图神经网络的模型集合。项目来源于CIKM 2021资源论文,提供了对网格化和图基础模型的基准测试。
1. 项目目录结构及介绍
.
├── METR-LA # 数据集之一,包含洛杉矶地区的交通流量数据
│ ├── metr-la.h5 # 特征文件
│ ├── adj_mx.pkl # 不对称道路邻接文件
│ └── W_metrla.csv # 对称道路邻接文件
├── PEMSBAY # 另一数据集,涵盖湾区的交通信息
│ ├── pems-bay.h5 # 特征文件
│ ├── adj_mx_bay.pkl # 不对称道路邻接文件
│ └── W_pemsbay.csv # 对称道路邻接文件
├── PEMSD7M # 第三个数据集,对应特定区域的详细交通数据
│ ├── V_228.csv # 特征文件
│ └── W_228.csv # 道路邻接关系文件
├── workMETRLA # 主程序文件夹,以METR-LA为例的处理逻辑
│ ├── parameter.py # 共享参数文件
│ ├── parameter_STGCN.py # STGCN模型特定参数
│ ├── STGCN.py # STGCN模型文件,用于调试和接口提供
│ └── pred_STGCN3.csv # 预测输出文件示例
├── workPEMSBAY # 类似的主程序文件夹,针对PEMSBAY数据集
├── workPEMSD7M # 同上,针对PEMSD7M数据集
├── requirements.txt # 项目依赖项(假设存在,未直接列出)
├── README.md # 项目说明文档
└── setup.py # 安装脚本(示例,实际项目中可能不存在)
2. 项目的启动文件介绍
示例:使用STGCN模型进行训练和预测(以METR-LA数据集为例)
-
训练与预测程序:
workMETRLA/pred_STGCN3.py
是主要的执行程序,用于模型的训练、预测和测试。 -
模型调试运行:你可以直接运行
STGCN.py
在特定GPU上调试模型(例如,GPU 1),通过命令python STGCN.py 1
。 -
完整流程启动:使用同样的Python命令但执行预测程序来完成整个训练和测试过程,如
python pred_STGCN3.py 1
。
3. 项目的配置文件介绍
- 共享参数文件:每个数据集对应的
work*/*/*.py
文件夹下有parameter.py
,它包含了所有模型共用的基础参数设置。 - 模型特定参数:例如
parameter_STGCN.py
提供了STGCN模型的特殊配置,优先于共享参数。
这些配置文件定义了模型训练的关键超参数,如学习率、批次大小、网络结构细节等。用户可以根据需要调整这些参数以优化模型性能或适应不同的实验需求。
安装与基本环境准备:
-
先决条件:确保你的系统已安装Ubuntu 20.04.2 LTS,Python 3.6及以上版本(推荐使用Anaconda环境)以及PyTorch 1.6.0+。
-
项目克隆与依赖安装:通过Git克隆项目,并使用pip安装必要的库,注意
torch-summary
的正确安装步骤,避免旧版引起的错误。
开始探索前,请仔细阅读项目内的README.md
,了解数据预处理和具体运行案例。这样,你就能够顺利地在你的环境中部署并测试DL-Traff-Graph
,利用其强大的功能进行城市交通预测分析。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
227
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197