Human-detection-and-Tracking 项目教程
2024-09-15 15:42:03作者:廉皓灿Ida
1. 项目介绍
1.1 项目概述
Human-detection-and-Tracking 是一个基于 OpenCV 的开源项目,旨在实现视频中的人体检测、人脸检测、人脸识别以及人体跟踪功能。该项目通过提取人脸的 Local Binary Pattern Histogram (LBPH) 特征来识别和跟踪视频中的人体。
1.2 主要功能
- 人体检测:在给定的视频中检测人体。
- 人脸检测:在检测到的人体中进一步检测人脸。
- 人脸识别:使用预训练的 LBPH 模型识别检测到的人脸。
- 人体跟踪:在视频序列中跟踪识别到的人体,并为其分配标签。
1.3 技术栈
- OpenCV:用于图像处理和计算机视觉任务。
- Python:用于实现主要的检测和识别逻辑。
- C++:提供另一种实现方式,适用于性能要求较高的场景。
2. 项目快速启动
2.1 环境准备
确保你已经安装了以下依赖:
- OpenCV 3.1.1
- Python 3.4
- 其他 Python 库:PILLOW, imutils, numpy
2.2 安装步骤
-
克隆项目:
git clone https://github.com/ITCoders/Human-detection-and-Tracking.git cd Human-detection-and-Tracking -
创建人脸模型: 使用项目提供的
create_face_model.py脚本创建人脸识别模型。python create_face_model.py -i /path/to/persons_images/ -
运行 Python 版本: 将输入视频放在一个文件夹中,并提供该文件夹的路径作为命令行参数。
python3 main.py -v /path/to/input/videos/ -
运行 C++ 版本: 编译并运行 C++ 版本的代码。
g++ -ggdb `pkg-config --cflags opencv` -o `basename main.cpp .cpp` main.cpp `pkg-config --libs opencv` ./main /path/to/input/video_file
3. 应用案例和最佳实践
3.1 应用案例
- 视频监控:在监控视频中自动检测和跟踪可疑人员。
- 人脸识别系统:用于识别和验证视频中的人脸。
- 行为分析:结合动作识别技术,分析视频中的人体行为。
3.2 最佳实践
- 数据准备:确保输入数据的质量,包括视频分辨率和帧率。
- 模型优化:根据实际应用场景调整 LBPH 模型的参数,以提高识别精度。
- 性能优化:在性能较低的设备上,可以考虑使用 C++ 版本以提高处理速度。
4. 典型生态项目
4.1 OpenCV
OpenCV 是一个开源的计算机视觉库,提供了丰富的图像处理和计算机视觉算法。Human-detection-and-Tracking 项目充分利用了 OpenCV 的功能来实现人体和人脸的检测与识别。
4.2 TensorFlow/PyTorch
虽然本项目主要使用 OpenCV 进行图像处理,但在更复杂的场景中,可以结合 TensorFlow 或 PyTorch 等深度学习框架来提高检测和识别的精度。
4.3 Dlib
Dlib 是另一个强大的计算机视觉库,特别擅长人脸检测和识别。在某些场景下,可以考虑使用 Dlib 来替代或补充 OpenCV 的功能。
通过以上模块的介绍,你可以快速上手 Human-detection-and-Tracking 项目,并了解其在实际应用中的潜力和最佳实践。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.19 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92