开源项目 Human-detection-and-Tracking 使用教程
2024-09-21 16:33:04作者:秋泉律Samson
1. 项目目录结构及介绍
Human-detection-and-Tracking/
├── data/
│ └── 存放用于训练的人脸图像数据
├── face_cascades/
│ └── 存放用于人脸检测的级联分类器文件
├── results/
│ └── 存放程序运行结果
├── scripts/
│ └── 存放一些辅助脚本
├── video/
│ └── 存放用于测试的视频文件
├── .gitignore
├── LICENSE
├── README.md
├── create_face_model.py
├── main.cpp
├── main.py
├── model.yaml
└── tracking.cpp
目录结构说明
- data/: 存放用于训练的人脸图像数据。每个图像文件应命名为
subjectx_y.jpg,例如subject01_0.jpg。 - face_cascades/: 存放用于人脸检测的级联分类器文件。
- results/: 存放程序运行结果。
- scripts/: 存放一些辅助脚本,用于处理数据或执行其他任务。
- video/: 存放用于测试的视频文件。
- .gitignore: Git 忽略文件配置。
- LICENSE: 项目许可证文件。
- README.md: 项目说明文档。
- create_face_model.py: 用于创建人脸识别模型的 Python 脚本。
- main.cpp: 用于人脸检测和识别的 C++ 主程序。
- main.py: 用于人脸检测和识别的 Python 主程序。
- model.yaml: 存放训练好的人脸识别模型文件。
- tracking.cpp: 用于跟踪的 C++ 程序。
2. 项目的启动文件介绍
2.1 main.py
main.py 是 Python 版本的主程序,用于人脸检测和识别。启动该程序时,需要提供视频文件的路径作为命令行参数。
python3 main.py -v /path/to/input/videos/
例如,如果视频文件存放在 video/ 目录下,可以这样启动:
python3 main.py -v /video
2.2 main.cpp
main.cpp 是 C++ 版本的主程序,用于人脸检测和识别。启动该程序时,需要提供视频文件的路径作为命令行参数。
首先,需要编译 main.cpp 文件:
g++ -ggdb `pkg-config --cflags opencv` -o `basename main.cpp .cpp` main.cpp `pkg-config --libs opencv`
然后,运行编译后的程序:
./main /path/to/input/video_file
例如,如果视频文件存放在 video/ 目录下,可以这样启动:
./main /video/2.mp4
3. 项目的配置文件介绍
3.1 model.yaml
model.yaml 是训练好的人脸识别模型文件,包含了用于识别的人脸特征。该文件由 create_face_model.py 脚本生成。
3.2 create_face_model.py
create_face_model.py 是一个 Python 脚本,用于从 data/ 目录中的图像数据创建人脸识别模型文件 model.yaml。
运行该脚本时,需要提供图像数据的路径作为命令行参数:
python3 create_face_model.py -i /path/to/persons_images/
例如,如果图像数据存放在 data/ 目录下,可以这样运行:
python3 create_face_model.py -i /data
3.3 .gitignore
.gitignore 文件用于配置 Git 忽略的文件和目录,避免将不必要的文件提交到版本控制系统中。
3.4 LICENSE
LICENSE 文件包含了项目的许可证信息,本项目使用 Apache-2.0 许可证。
3.5 README.md
README.md 是项目的说明文档,包含了项目的简介、安装方法、使用说明等内容。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248