AWS Deep Learning Containers发布PyTorch 2.5.1 ARM64 CPU推理容器
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习环境容器镜像,它集成了主流深度学习框架及其依赖项,帮助开发者快速部署和运行深度学习工作负载。这些容器经过优化,可直接在AWS云服务上使用,大大简化了深度学习环境的搭建过程。
近日,AWS发布了针对ARM64架构的PyTorch 2.5.1 CPU推理容器镜像,版本号为v1.7。这个新版本基于Ubuntu 22.04操作系统,预装了Python 3.11环境,专为在SageMaker服务上运行PyTorch推理工作负载而优化。
核心特性与技术细节
该容器镜像包含了PyTorch 2.5.1及其相关生态组件,全部针对ARM64架构编译优化。主要技术组件包括:
-
PyTorch核心框架:2.5.1版本,针对CPU进行了优化
-
配套工具链:
- torchaudio 2.5.1
- torchvision 0.20.1
- torch-model-archiver 0.12.0
- torchserve 0.12.0
-
科学计算与数据处理库:
- NumPy 2.1.3
- pandas 2.2.3
- scikit-learn 1.5.2
- scipy 1.14.1
- OpenCV 4.10.0
-
系统依赖:
- GCC 11工具链
- Cython 3.0.11
- Ninja构建系统
环境配置与兼容性
该容器镜像基于Ubuntu 22.04 LTS构建,提供了稳定的基础环境。Python环境为3.11版本,这是目前Python的最新稳定版本之一,在性能和功能上都有显著提升。
值得注意的是,这个镜像是专门为ARM64架构优化的,适合运行在AWS Graviton处理器上。Graviton处理器基于ARM架构,相比传统x86架构处理器,在性价比和能效比方面有明显优势,特别适合机器学习推理工作负载。
使用场景与优势
这个PyTorch推理容器主要适用于以下场景:
- 模型服务化:通过集成的TorchServe工具,可以快速将训练好的PyTorch模型部署为可扩展的推理服务
- 批量推理:利用容器中的数据处理库,可以高效处理大批量数据
- 边缘计算:ARM架构的低功耗特性使其适合边缘设备部署
相比自行搭建环境,使用AWS DLC有以下优势:
- 开箱即用:预装了所有必要的依赖项,无需手动安装配置
- 性能优化:针对AWS基础设施进行了专门优化
- 安全可靠:由AWS维护,定期更新安全补丁
- 版本兼容性保证:所有组件版本经过严格测试,确保兼容性
总结
AWS Deep Learning Containers发布的这个PyTorch 2.5.1 ARM64 CPU推理容器,为开发者提供了在Graviton处理器上运行PyTorch推理工作负载的高效解决方案。它集成了最新的PyTorch生态工具链和科学计算库,同时保持了AWS服务一贯的易用性和可靠性。对于希望在ARM架构上部署PyTorch模型的企业和开发者来说,这是一个值得考虑的选择。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00