AWS Deep Learning Containers发布PyTorch ARM64 CPU推理镜像v1.5
2025-07-07 18:56:53作者:尤辰城Agatha
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化的深度学习容器镜像,这些镜像预装了流行的深度学习框架及其依赖项,能够帮助开发者快速部署深度学习应用。这些容器镜像针对AWS基础设施进行了优化,支持多种计算实例类型,包括CPU和GPU实例。
近日,AWS Deep Learning Containers项目发布了针对ARM64架构的PyTorch推理镜像新版本v1.5。这个版本基于PyTorch 2.5.1框架构建,专门为ARM64架构的CPU实例优化,适用于在Amazon SageMaker等服务中部署PyTorch模型推理任务。
镜像技术细节
该镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境,包含了PyTorch 2.5.1及其相关生态工具链。主要组件版本如下:
- PyTorch核心框架:2.5.1+cpu
- TorchVision:0.20.1+cpu
- TorchAudio:2.5.1+cpu
- TorchServe模型服务框架:0.12.0
- Torch Model Archiver模型打包工具:0.12.0
除了PyTorch核心组件外,镜像还预装了常用的数据科学和机器学习库:
- NumPy 2.1.3:高性能科学计算库
- Pandas 2.2.3:数据处理和分析库
- scikit-learn 1.5.2:机器学习算法库
- OpenCV 4.10.0.84:计算机视觉库
- Pillow 11.0.0:图像处理库
环境配置与优化
这个ARM64架构的镜像针对AWS Graviton处理器等ARM架构CPU进行了优化。系统层面配置了:
- GCC 11开发工具链
- C++标准库(libstdc++)11版本
- 必要的系统工具和编辑器(如Emacs)
Python环境方面,除了预装的核心库外,还包含了:
- Cython 3.0.11:用于编写C扩展的Python工具
- Ninja 1.11.1.1:高效的构建系统
- FileLock 3.16.1:文件锁工具
- 最新的pip包管理工具
使用场景
这个PyTorch ARM64 CPU推理镜像特别适合以下场景:
- 需要在ARM架构处理器上运行PyTorch模型推理的应用
- 使用Amazon SageMaker服务部署PyTorch模型的场景
- 对成本敏感,希望利用ARM架构CPU性价比优势的项目
- 需要轻量级推理服务,不需要GPU加速的场景
版本兼容性
该镜像属于PyTorch 2.5.x系列,保持了与PyTorch 2.5版本的API兼容性。开发者可以放心使用PyTorch 2.5的特性,同时享受ARM架构带来的性能优势。
对于需要在AWS上部署PyTorch推理服务的开发者,这个经过优化的ARM64镜像提供了开箱即用的解决方案,可以显著减少环境配置时间,提高部署效率。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K