PyKAN项目中1D输入符号回归问题的解决方案
2025-05-14 22:32:45作者:俞予舒Fleming
问题背景
在使用PyKAN项目进行符号回归时,研究人员经常需要处理一维输入数据的拟合问题。一个典型场景是拟合类似阿伦尼乌斯方程的复杂单变量公式:y = Ax^nexp(-E/R/x)。然而,当尝试使用KAN(可解释人工神经网络)模型处理这类1D输入时,可能会遇到PyTorch后端库的运行时错误。
错误现象
当配置模型为1D输入、1D输出和5个隐藏神经元时,训练过程中会出现以下关键错误信息:
RuntimeError: false INTERNAL ASSERT FAILED at "..\\aten\\src\\ATen\\native\\BatchLinearAlgebra.cpp":1538
torch.linalg.lstsq: (Batch element 0): Argument 6 has illegal value
同时伴随有Intel MKL库关于SGELSY函数参数6不正确的错误提示。
错误原因分析
经过深入研究,发现该问题主要由以下几个因素导致:
-
数据条件数问题:当输入数据范围较大(如250-1250)而输出值变化剧烈时,会导致数值计算不稳定。
-
矩阵奇异问题:在样条曲线拟合过程中,当使用torch.linalg.lstsq求解线性方程组时,设计矩阵可能接近奇异。
-
参数配置不当:初始网格点(grid=5)和样条阶数(k=3)的组合可能不适合特定数据分布。
解决方案
针对这一问题,可以采用以下几种解决方法:
-
数据标准化:对输入数据进行归一化处理,将其缩放到0-1或-1-1范围内,可以提高数值稳定性。
-
调整模型参数:
- 增加网格点数量(grid=10或更高)
- 降低样条阶数(k=2)
- 减小正则化系数(lamb=0.001)
-
使用更稳定的求解器:尝试不同的线性求解器参数,如修改driver参数。
-
分阶段训练:先使用较小学习率训练,再逐步增加复杂度。
实施示例
以下是修正后的代码实现:
from kan import *
import numpy as np
# 数据预处理
x = np.linspace(250, 1250, 1000)
x_normalized = (x - x.min()) / (x.max() - x.min()) # 归一化到0-1范围
# 创建KAN模型,调整参数
model = KAN(width=[1,5,1], grid=10, k=2, seed=0, device='cpu')
# 定义目标函数
A = 3.55e15
n = -0.41
E = 16.6
R = 8.314
f = lambda x: torch.exp(-E/R/x)*A*x**n
# 创建数据集
dataset = create_dataset(f, n_var=1)
# 分阶段训练
model.train(dataset, opt="LBFGS", steps=10, lamb=0.001, lamb_entropy=1.)
model.train(dataset, opt="LBFGS", steps=10, lamb=0.01, lamb_entropy=10.)
# 模型修剪和可视化
model = model.prune()
model.plot()
最佳实践建议
-
对于指数类函数,建议先对输出值取对数,转换为线性问题处理。
-
在训练前进行数据探索,了解数据分布特征。
-
采用学习率预热策略,逐步增加模型复杂度。
-
监控训练过程中的损失变化,及时发现数值不稳定问题。
-
对于物理公式拟合,考虑将已知的常数部分作为先验知识融入模型。
通过以上方法,可以有效解决PyKAN在处理1D输入符号回归问题时遇到的数值计算问题,使模型能够稳定收敛并得到合理的拟合结果。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133