PyKAN项目中1D输入符号回归问题的解决方案
2025-05-14 04:21:25作者:俞予舒Fleming
问题背景
在使用PyKAN项目进行符号回归时,研究人员经常需要处理一维输入数据的拟合问题。一个典型场景是拟合类似阿伦尼乌斯方程的复杂单变量公式:y = Ax^nexp(-E/R/x)。然而,当尝试使用KAN(可解释人工神经网络)模型处理这类1D输入时,可能会遇到PyTorch后端库的运行时错误。
错误现象
当配置模型为1D输入、1D输出和5个隐藏神经元时,训练过程中会出现以下关键错误信息:
RuntimeError: false INTERNAL ASSERT FAILED at "..\\aten\\src\\ATen\\native\\BatchLinearAlgebra.cpp":1538
torch.linalg.lstsq: (Batch element 0): Argument 6 has illegal value
同时伴随有Intel MKL库关于SGELSY函数参数6不正确的错误提示。
错误原因分析
经过深入研究,发现该问题主要由以下几个因素导致:
-
数据条件数问题:当输入数据范围较大(如250-1250)而输出值变化剧烈时,会导致数值计算不稳定。
-
矩阵奇异问题:在样条曲线拟合过程中,当使用torch.linalg.lstsq求解线性方程组时,设计矩阵可能接近奇异。
-
参数配置不当:初始网格点(grid=5)和样条阶数(k=3)的组合可能不适合特定数据分布。
解决方案
针对这一问题,可以采用以下几种解决方法:
-
数据标准化:对输入数据进行归一化处理,将其缩放到0-1或-1-1范围内,可以提高数值稳定性。
-
调整模型参数:
- 增加网格点数量(grid=10或更高)
- 降低样条阶数(k=2)
- 减小正则化系数(lamb=0.001)
-
使用更稳定的求解器:尝试不同的线性求解器参数,如修改driver参数。
-
分阶段训练:先使用较小学习率训练,再逐步增加复杂度。
实施示例
以下是修正后的代码实现:
from kan import *
import numpy as np
# 数据预处理
x = np.linspace(250, 1250, 1000)
x_normalized = (x - x.min()) / (x.max() - x.min()) # 归一化到0-1范围
# 创建KAN模型,调整参数
model = KAN(width=[1,5,1], grid=10, k=2, seed=0, device='cpu')
# 定义目标函数
A = 3.55e15
n = -0.41
E = 16.6
R = 8.314
f = lambda x: torch.exp(-E/R/x)*A*x**n
# 创建数据集
dataset = create_dataset(f, n_var=1)
# 分阶段训练
model.train(dataset, opt="LBFGS", steps=10, lamb=0.001, lamb_entropy=1.)
model.train(dataset, opt="LBFGS", steps=10, lamb=0.01, lamb_entropy=10.)
# 模型修剪和可视化
model = model.prune()
model.plot()
最佳实践建议
-
对于指数类函数,建议先对输出值取对数,转换为线性问题处理。
-
在训练前进行数据探索,了解数据分布特征。
-
采用学习率预热策略,逐步增加模型复杂度。
-
监控训练过程中的损失变化,及时发现数值不稳定问题。
-
对于物理公式拟合,考虑将已知的常数部分作为先验知识融入模型。
通过以上方法,可以有效解决PyKAN在处理1D输入符号回归问题时遇到的数值计算问题,使模型能够稳定收敛并得到合理的拟合结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
436
3.32 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
701
379
Ascend Extension for PyTorch
Python
246
283
暂无简介
Dart
699
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
273
328
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
267
124
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871