AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.15
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,它集成了主流深度学习框架、工具和库,帮助开发者快速部署机器学习工作负载。这些容器镜像经过优化,可直接在AWS云服务上运行,大幅简化了深度学习环境的配置过程。
本次发布的v1.15版本主要针对ARM64架构的PyTorch推理场景,提供了基于Ubuntu 22.04操作系统、Python 3.11环境的完整解决方案。该镜像特别适用于在Amazon SageMaker服务上部署PyTorch模型推理任务。
核心特性与技术细节
该容器镜像基于PyTorch 2.5.1版本构建,针对CPU推理场景进行了优化。作为长期支持版本,PyTorch 2.5系列提供了稳定的API接口和性能改进,特别适合生产环境部署。
镜像中预装了完整的PyTorch生态系统工具链,包括:
- torchaudio 2.5.1:用于音频处理的PyTorch扩展库
- torchvision 0.20.1:计算机视觉任务的必备工具包
- torch-model-archiver 0.12.0:模型打包工具
- torchserve 0.12.0:PyTorch模型服务框架
这些组件的版本都经过严格测试,确保相互兼容,开发者无需担心依赖冲突问题。
预装软件包分析
容器镜像中预装了丰富的Python和系统软件包,为深度学习推理任务提供了全面的支持:
Python生态方面:
- 数据处理:NumPy 2.1.3、Pandas 2.2.3、SciPy 1.14.1等科学计算库
- 机器学习:scikit-learn 1.5.2机器学习工具包
- 计算机视觉:OpenCV 4.10.0.84图像处理库
- 开发工具:Cython 3.0.11、ninja 1.11.1.1等构建工具
系统层面:
- 编译器支持:libgcc-11-dev和libstdc++-11-dev等基础开发库
- 开发工具:emacs编辑器等常用工具
这些预装组件覆盖了从模型服务到数据预处理的全流程需求,开发者可以开箱即用,无需额外安装依赖。
适用场景与优势
该ARM64架构的PyTorch推理镜像特别适合以下场景:
- 需要在基于ARM架构的EC2实例(如Graviton系列)上部署PyTorch模型
- 使用Amazon SageMaker服务进行模型托管和推理
- 对成本敏感的生产环境,希望利用ARM架构的成本优势
相比x86架构,ARM64架构通常能提供更好的性价比,特别是在推理负载上。AWS通过这种预构建的容器镜像,让开发者能够轻松利用ARM架构的优势,而无需关心底层兼容性问题。
版本管理与兼容性
该镜像提供了多个标签别名,方便不同使用场景:
- 精确版本标签:2.5.1-cpu-py311-ubuntu22.04-sagemaker-v1.15
- 主版本标签:2.5-cpu-py311
- 框架版本标签:2.5.1-cpu-py311
这种灵活的标签策略既保证了生产环境的稳定性需求,又满足了开发测试环境的便利性。开发者可以根据实际需求选择合适的镜像标签。
总结
AWS Deep Learning Containers的这次更新,为ARM64架构上的PyTorch推理任务提供了官方支持,进一步丰富了AWS的机器学习生态系统。通过使用这些预构建的容器镜像,开发者可以专注于模型开发和业务逻辑,而无需花费大量时间在环境配置和依赖管理上。特别是对于已经在使用Amazon SageMaker服务的团队,这大大简化了从开发到生产的部署流程。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00