AWS Deep Learning Containers发布AutoGluon 1.3.0训练镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化的深度学习容器镜像,这些镜像预先配置了流行的深度学习框架和工具,可以帮助开发者快速在AWS平台上部署和运行深度学习工作负载。本次发布的版本主要针对AutoGluon框架进行了更新,提供了基于Python 3.11的CPU和GPU训练环境。
镜像内容概览
本次发布的DLC镜像包含两个主要版本:
-
CPU版本:基于Ubuntu 22.04系统,预装了AutoGluon 1.3.0及其相关依赖,适用于不需要GPU加速的训练场景。
-
GPU版本:同样基于Ubuntu 22.04系统,但额外支持CUDA 12.4,为需要GPU加速的训练任务提供了优化支持。
两个版本都预装了完整的Python 3.11科学计算生态,包括NumPy、Pandas、Scikit-learn等常用库,以及PyTorch、LightGBM、XGBoost等机器学习框架。
关键技术组件
AutoGluon 1.3.0
AutoGluon是亚马逊开发的一个自动化机器学习框架,它能够自动完成特征工程、模型选择和超参数调优等复杂过程。1.3.0版本带来了多项改进:
- 核心框架优化,提高了训练效率
- 表格数据处理能力增强
- 特征工程模块更新
- 更好的模型集成策略
深度学习框架支持
镜像中预装了PyTorch 2.5.1,这是一个重要的深度学习框架版本,包含了多项性能优化和新特性。对于GPU版本,特别针对CUDA 12.4进行了编译优化,能够充分发挥NVIDIA GPU的计算能力。
科学计算生态
镜像包含了完整的Python科学计算工具链:
- NumPy 1.26.4:基础数值计算库
- Pandas 2.2.3:数据处理和分析工具
- Scikit-learn 1.6.1:传统机器学习算法实现
- LightGBM 4.6.0和XGBoost 3.0.0:梯度提升树实现
- OpenCV 4.11.0:计算机视觉库
环境配置细节
系统基础
两个镜像都基于Ubuntu 22.04 LTS系统构建,这是一个长期支持版本,提供了稳定的系统环境。镜像中还包含了常用的开发工具,如Emacs编辑器。
Python环境
使用Python 3.11作为基础解释器,这是Python的最新稳定版本之一,带来了显著的性能提升。通过pip安装了完整的依赖关系,确保开箱即用。
硬件支持
GPU版本特别针对NVIDIA CUDA 12.4进行了优化,包含了cuDNN等加速库,能够充分利用GPU的并行计算能力。同时,镜像也支持多机分布式训练,通过smdistributed-dataparallel 2.6.0实现数据并行。
使用场景
这些镜像特别适合以下场景:
- 自动化机器学习实验:利用AutoGluon快速构建和评估多种机器学习模型
- 表格数据预测:针对结构化数据的分类和回归问题
- 深度学习原型开发:结合PyTorch进行深度学习模型实验
- 大规模特征工程:利用内置的特征处理工具处理复杂数据
总结
AWS Deep Learning Containers提供的这些AutoGluon训练镜像,为机器学习开发者提供了即用型的环境,大大减少了环境配置的时间成本。特别是对AutoGluon框架的支持,使得自动化机器学习工作流能够快速部署到AWS平台上。无论是CPU还是GPU版本,都经过了充分优化,能够满足不同规模和需求的项目。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00