GLM-4多模态模型显存管理问题分析与解决方案
2025-06-03 21:14:32作者:何举烈Damon
问题背景
在GLM-4项目的composite-demo中,用户在使用多模态功能时遇到了显存溢出的问题。具体表现为当从"all tools"选项切换到多模态模式时,显存使用量会持续增长直至达到32GB上限,最终导致CUDA内存不足错误(OOM)。
问题现象分析
根据用户报告和开发团队复现,该问题具有以下特征:
- 初始状态下,加载GLM-4-9B模型后显存占用约为8GB(使用int4量化)
- 当切换到多模态模式时,显存占用会逐步上升
- 最终显存使用会达到32GB上限并抛出
torch.cuda.OutOfMemoryError错误 - 直接启动多模态模式可以正常工作,但模式切换会导致问题
技术原因
经过开发团队分析,该问题主要由以下几个因素导致:
- 模型切换时的显存释放不彻底:当从"all tools"模式切换到多模态模式时,前一个模型的显存未能完全释放
- 多模态模型的高显存需求:GLM-4V多模态模型本身需要约28GB显存(使用HuggingFace客户端)
- 显存碎片化:频繁的模式切换可能导致显存碎片化,进一步加剧显存压力
解决方案
开发团队已针对此问题进行了修复,主要改进包括:
- 显存管理优化:完善了模式切换时的显存释放机制
- 资源加载策略调整:优化了多模态模型的加载方式
- 错误处理增强:添加了更完善的显存不足检测和错误处理
使用建议
对于GLM-4多模态功能的使用,建议:
- 确保设备至少具有32GB显存
- 尽量避免频繁的模式切换
- 对于大文档处理,考虑使用量化模型(int4)以减少显存占用
- 多卡环境下,正确配置
CUDA_VISIBLE_DEVICES和device_map参数
总结
GLM-4作为多模态大模型,在提供强大功能的同时也对硬件资源提出了较高要求。开发团队将持续优化显存管理策略,平衡模型性能与资源消耗。用户在使用过程中遇到显存问题时,可以参考本文的分析和建议进行排查和优化。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178