AWS Deep Learning Containers发布PyTorch 2.5.1推理专用镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化,可直接在AWS云平台上运行。它们包含了流行的深度学习框架、工具和库,帮助开发者快速部署机器学习模型,而无需从零开始配置环境。
近日,AWS DLC项目发布了针对PyTorch 2.5.1框架的推理专用容器镜像更新。这些镜像基于Ubuntu 22.04操作系统构建,支持Python 3.11环境,为机器学习推理任务提供了开箱即用的解决方案。
主要镜像特性
本次发布的镜像分为CPU和GPU两个版本:
-
CPU版本镜像:适用于不需要GPU加速的推理场景,包含了PyTorch 2.5.1的CPU优化版本,以及常用的数据处理和科学计算库如NumPy、Pandas、Scikit-learn等。
-
GPU版本镜像:基于CUDA 12.4工具链构建,支持NVIDIA GPU加速,包含了PyTorch 2.5.1的CUDA优化版本,以及相关的GPU加速库如cuBLAS、cuDNN等。
关键技术组件
两个版本都预装了以下重要组件:
-
PyTorch生态系统:包括torch(2.5.1)、torchvision(0.20.1)、torchaudio(2.5.1)以及模型服务工具torchserve(0.12.0)和torch-model-archiver(0.12.0)。
-
数据处理库:NumPy 2.1.3、Pandas 2.2.3、OpenCV 4.10.0等,为图像处理和数据分析提供支持。
-
机器学习工具:Scikit-learn 1.5.2和SciPy 1.14.1等常用机器学习库。
-
AWS工具链:包括AWS CLI、boto3和botocore等,方便与AWS服务集成。
环境配置细节
GPU版本特别针对NVIDIA GPU进行了优化配置:
- 使用CUDA 12.4工具链,包含cuBLAS和cuDNN等加速库
- 支持多GPU并行计算的MPI实现(mpi4py 4.0.1)
- 预装了必要的GPU驱动和运行时环境
CPU版本则专注于通用计算优化:
- 使用GCC 11编译工具链
- 包含标准C++库的最新版本
- 针对CPU架构优化的数学运算库
使用场景建议
这些预构建的容器镜像特别适合以下场景:
-
模型部署:快速部署训练好的PyTorch模型到生产环境,无需担心依赖管理和环境配置问题。
-
推理服务:使用内置的torchserve工具构建高性能的模型推理服务。
-
开发测试:为PyTorch项目提供一致的开发环境,确保开发、测试和生产环境的一致性。
-
AWS服务集成:与SageMaker等AWS机器学习服务无缝集成,简化ML工作流。
版本兼容性
需要注意的是,这些镜像基于PyTorch 2.5.1版本构建,与PyTorch 2.5.x系列兼容。对于需要特定版本依赖的项目,建议先进行兼容性测试。镜像中Python版本固定为3.11,使用较新的语言特性。
AWS Deep Learning Containers的这种定期更新机制,确保了开发者能够及时获得最新框架版本的安全更新和性能优化,同时保持了环境的稳定性。对于企业级机器学习部署来说,这种经过验证的容器镜像可以显著降低运维复杂度,提高部署效率。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00