首页
/ AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像

AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像

2025-07-06 13:12:08作者:伍霜盼Ellen

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化和测试,可直接用于训练和推理任务。它们集成了流行的深度学习框架,如PyTorch、TensorFlow等,并预先配置了必要的依赖项,使开发者能够快速部署深度学习应用而无需花费大量时间在环境配置上。

近日,AWS DLC项目发布了PyTorch 2.5.1推理镜像的两个新版本,分别支持CPU和GPU环境。这些镜像基于Ubuntu 22.04操作系统,并针对SageMaker服务进行了优化。

CPU版本镜像特性

CPU版本的镜像(pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-sagemaker-v1.18)主要包含以下技术组件:

  • PyTorch 2.5.1(CPU版本)
  • Python 3.11环境
  • 关键Python包:
    • NumPy 2.1.3
    • Pandas 2.2.3
    • OpenCV 4.10.0
    • SciPy 1.14.1
    • scikit-learn 1.5.2
  • 工具链:
    • TorchServe 0.12.0
    • TorchModelArchiver 0.12.0
    • AWS CLI 1.35.22

该镜像特别适合不需要GPU加速的推理场景,或者开发测试环境使用。

GPU版本镜像特性

GPU版本的镜像(pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.18)基于CUDA 12.4构建,包含:

  • PyTorch 2.5.1(CUDA 12.4支持)
  • 完整的CUDA工具链
  • cuDNN 9库
  • cuBLAS 12.4库
  • 与CPU版本相同的Python包和工具

GPU版本针对需要高性能推理的场景进行了优化,能够充分利用NVIDIA GPU的并行计算能力。

技术亮点

  1. Python 3.11支持:两个镜像都基于Python 3.11构建,这是目前Python的最新稳定版本之一,提供了更好的性能和内存管理。

  2. PyTorch 2.5.1:包含了PyTorch框架的最新稳定版本,带来了性能改进和新特性。

  3. 完整的工具链:内置了TorchServe和TorchModelArchiver,方便用户直接部署和管理PyTorch模型。

  4. 科学计算生态:预装了完整的科学计算和机器学习库,包括NumPy、Pandas、SciPy和scikit-learn等。

  5. AWS集成:内置AWS CLI和boto3等工具,方便与AWS服务集成。

使用场景

这些镜像特别适合以下场景:

  1. 模型部署:快速部署训练好的PyTorch模型到生产环境。

  2. 开发测试:为开发人员提供一致的开发环境,避免环境配置问题。

  3. SageMaker集成:作为SageMaker服务的推理容器,简化模型部署流程。

  4. 批处理推理:处理大规模批量的推理任务。

AWS Deep Learning Containers的这些新版本镜像为PyTorch用户提供了开箱即用的解决方案,大大简化了深度学习模型的部署流程,使开发者能够更专注于模型本身和业务逻辑的实现。

登录后查看全文
热门项目推荐