AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化和测试,可直接用于训练和推理任务。它们集成了流行的深度学习框架,如PyTorch、TensorFlow等,并预先配置了必要的依赖项,使开发者能够快速部署深度学习应用而无需花费大量时间在环境配置上。
近日,AWS DLC项目发布了PyTorch 2.5.1推理镜像的两个新版本,分别支持CPU和GPU环境。这些镜像基于Ubuntu 22.04操作系统,并针对SageMaker服务进行了优化。
CPU版本镜像特性
CPU版本的镜像(pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-sagemaker-v1.18)主要包含以下技术组件:
- PyTorch 2.5.1(CPU版本)
- Python 3.11环境
- 关键Python包:
- NumPy 2.1.3
- Pandas 2.2.3
- OpenCV 4.10.0
- SciPy 1.14.1
- scikit-learn 1.5.2
- 工具链:
- TorchServe 0.12.0
- TorchModelArchiver 0.12.0
- AWS CLI 1.35.22
该镜像特别适合不需要GPU加速的推理场景,或者开发测试环境使用。
GPU版本镜像特性
GPU版本的镜像(pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.18)基于CUDA 12.4构建,包含:
- PyTorch 2.5.1(CUDA 12.4支持)
- 完整的CUDA工具链
- cuDNN 9库
- cuBLAS 12.4库
- 与CPU版本相同的Python包和工具
GPU版本针对需要高性能推理的场景进行了优化,能够充分利用NVIDIA GPU的并行计算能力。
技术亮点
-
Python 3.11支持:两个镜像都基于Python 3.11构建,这是目前Python的最新稳定版本之一,提供了更好的性能和内存管理。
-
PyTorch 2.5.1:包含了PyTorch框架的最新稳定版本,带来了性能改进和新特性。
-
完整的工具链:内置了TorchServe和TorchModelArchiver,方便用户直接部署和管理PyTorch模型。
-
科学计算生态:预装了完整的科学计算和机器学习库,包括NumPy、Pandas、SciPy和scikit-learn等。
-
AWS集成:内置AWS CLI和boto3等工具,方便与AWS服务集成。
使用场景
这些镜像特别适合以下场景:
-
模型部署:快速部署训练好的PyTorch模型到生产环境。
-
开发测试:为开发人员提供一致的开发环境,避免环境配置问题。
-
SageMaker集成:作为SageMaker服务的推理容器,简化模型部署流程。
-
批处理推理:处理大规模批量的推理任务。
AWS Deep Learning Containers的这些新版本镜像为PyTorch用户提供了开箱即用的解决方案,大大简化了深度学习模型的部署流程,使开发者能够更专注于模型本身和业务逻辑的实现。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00