AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化和测试,可直接用于训练和推理任务。它们集成了流行的深度学习框架,如PyTorch、TensorFlow等,并预先配置了必要的依赖项,使开发者能够快速部署深度学习应用而无需花费大量时间在环境配置上。
近日,AWS DLC项目发布了PyTorch 2.5.1推理镜像的两个新版本,分别支持CPU和GPU环境。这些镜像基于Ubuntu 22.04操作系统,并针对SageMaker服务进行了优化。
CPU版本镜像特性
CPU版本的镜像(pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-sagemaker-v1.18)主要包含以下技术组件:
- PyTorch 2.5.1(CPU版本)
- Python 3.11环境
- 关键Python包:
- NumPy 2.1.3
- Pandas 2.2.3
- OpenCV 4.10.0
- SciPy 1.14.1
- scikit-learn 1.5.2
- 工具链:
- TorchServe 0.12.0
- TorchModelArchiver 0.12.0
- AWS CLI 1.35.22
该镜像特别适合不需要GPU加速的推理场景,或者开发测试环境使用。
GPU版本镜像特性
GPU版本的镜像(pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.18)基于CUDA 12.4构建,包含:
- PyTorch 2.5.1(CUDA 12.4支持)
- 完整的CUDA工具链
- cuDNN 9库
- cuBLAS 12.4库
- 与CPU版本相同的Python包和工具
GPU版本针对需要高性能推理的场景进行了优化,能够充分利用NVIDIA GPU的并行计算能力。
技术亮点
-
Python 3.11支持:两个镜像都基于Python 3.11构建,这是目前Python的最新稳定版本之一,提供了更好的性能和内存管理。
-
PyTorch 2.5.1:包含了PyTorch框架的最新稳定版本,带来了性能改进和新特性。
-
完整的工具链:内置了TorchServe和TorchModelArchiver,方便用户直接部署和管理PyTorch模型。
-
科学计算生态:预装了完整的科学计算和机器学习库,包括NumPy、Pandas、SciPy和scikit-learn等。
-
AWS集成:内置AWS CLI和boto3等工具,方便与AWS服务集成。
使用场景
这些镜像特别适合以下场景:
-
模型部署:快速部署训练好的PyTorch模型到生产环境。
-
开发测试:为开发人员提供一致的开发环境,避免环境配置问题。
-
SageMaker集成:作为SageMaker服务的推理容器,简化模型部署流程。
-
批处理推理:处理大规模批量的推理任务。
AWS Deep Learning Containers的这些新版本镜像为PyTorch用户提供了开箱即用的解决方案,大大简化了深度学习模型的部署流程,使开发者能够更专注于模型本身和业务逻辑的实现。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00