GLM-4项目微调过程中显存不足问题的分析与解决方案
2025-06-03 02:55:28作者:柏廷章Berta
问题背景
在使用GLM-4项目进行模型微调时,许多开发者遇到了一个看似与CUDA驱动相关的错误信息:"RuntimeError: r.nvmlDeviceGetNvLinkRemoteDeviceType_ INTERNAL ASSERT FAILED at "../c10/cuda/driver_api.cpp":27"。这个错误表面上看是CUDA驱动或PyTorch版本的问题,但实际上其根本原因与显存不足密切相关。
错误现象分析
当开发者尝试在A100 40G显卡上微调GLM-4V-9B模型时,系统会报出上述错误。错误信息中提到的"nvmlDeviceGetNvLinkRemoteDeviceType"是NVIDIA管理库(NVML)中的一个函数,这个函数在CUDA驱动版本470.42.01中才被引入。然而,深入分析后发现,这个错误实际上是显存不足导致的间接表现。
根本原因
GLM-4V-9B模型在微调时对显存有较高要求:
- 单卡微调需要至少75GB显存
- 当前项目尚未实现张量并行(TP)技术
- 模型无法在多卡间有效分配计算负载
当显存不足时,系统会尝试通过NVLink技术访问其他显卡的显存,但由于驱动版本或显存总量不足,最终导致了上述错误。
解决方案
针对这一问题,开发者可以采取以下几种解决方案:
1. 升级硬件配置
- 使用显存更大的显卡(如80GB版本的A100或H100)
- 确保多卡系统配置了足够的NVLink带宽
2. 调整训练参数
- 减小batch size以降低显存占用
- 使用梯度累积技术模拟更大的batch size
- 启用混合精度训练减少显存消耗
3. 软件环境优化
- 确保CUDA驱动版本≥470.42.01
- 使用PyTorch 2.3.0或更高版本
- 检查NVIDIA管理库的完整性
最佳实践建议
- 在进行大规模模型微调前,先进行小规模测试,评估显存需求
- 监控训练过程中的显存使用情况,及时发现潜在问题
- 考虑使用模型并行或数据并行技术来分布计算负载
- 关注GLM-4项目的更新,等待官方实现张量并行支持
总结
GLM-4项目中的这个错误案例告诉我们,在深度学习模型训练过程中,表面上的驱动或库函数错误可能实际上反映了更深层次的硬件资源限制问题。开发者需要具备透过现象看本质的能力,准确识别问题的根本原因,才能找到最有效的解决方案。对于大模型训练任务,充足的显存资源是成功的关键因素之一。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136