PyKAN项目中高精度网格训练不稳定的问题分析
问题背景
在PyKAN项目中,当使用KAN(Kolmogorov-Arnold Network)模型进行函数逼近任务时,研究人员发现随着网格精度的提高,特别是当网格数达到200时,模型训练出现了明显的性能下降和抖动现象。这一现象与论文中展示的结果存在不一致性。
现象描述
通过实验可以观察到:
- 当网格数从3逐步增加到100时,训练损失和测试损失都呈现稳定下降趋势
- 当网格数达到200时,损失突然增大并出现明显抖动
- 继续增加网格数到500和1000时,性能进一步恶化
潜在原因分析
经过技术分析,这种现象可能由以下几个因素导致:
-
噪声尺度参数的影响:PyKAN的默认参数
noise_scale_base从0.0变为了0.1,这种微小的噪声在高精度网格下会被放大,影响训练稳定性。 -
随机种子敏感性:在高精度训练场景下,模型对随机种子的选择变得更为敏感,不同的初始化可能导致截然不同的训练结果。
-
网格更新策略:默认的
stop_grid_update_step=50与实验中使用的30存在差异,较短的网格更新停止步数可能导致模型在高网格数下未能充分收敛。 -
数值稳定性问题:随着网格数的增加,模型参数数量急剧增长,数值计算中的微小误差在高精度下会被放大,导致训练不稳定。
解决方案建议
针对上述问题,可以尝试以下优化措施:
-
调整噪声参数:将
noise_scale_base显式设置为0.0,消除额外噪声的影响。 -
固定随机种子:使用确定的随机种子(如
seed=42)来提高实验的可重复性。 -
延长网格更新阶段:采用默认的
stop_grid_update_step=50或更大的值,确保模型在高网格数下有足够时间收敛。 -
渐进式训练策略:采用更平滑的网格数过渡方案,避免直接从100跳变到200。
-
正则化调整:适当调整正则化参数,防止高网格数下的过拟合问题。
技术启示
这一现象揭示了深度学习模型训练中的一个重要原则:高精度模型需要更精细的参数调校和训练策略。在实际应用中,盲目提高模型复杂度(如增加网格数)并不总能带来性能提升,反而可能引入新的问题。PyKAN项目的这一案例提醒我们,在追求模型精度的同时,必须关注训练的稳定性和可重复性。
通过合理调整训练参数和策略,研究人员应该能够在高网格数下获得与论文一致的稳定训练结果。这一过程也体现了深度学习研究中参数调校的重要性,以及理论结果与实际实现之间可能存在的细微差别。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00