Puerts项目中QuickJS后端模块实现的重构与优化
背景介绍
Puerts是一个将TypeScript/JavaScript与Unity/C++等原生环境桥接的技术框架,它支持多种JavaScript引擎后端。其中QuickJS作为一个轻量级的JavaScript引擎,在Puerts中有着重要应用。近期,Puerts项目团队对QuickJS后端的模块实现进行了重要重构,解决了原有实现中的一些关键问题。
原有实现的问题
在重构前的实现中,QuickJS后端的模块系统存在几个显著问题:
-
API混用问题:代码中同时混用了模拟V8 API和原生QuickJS API,这种混合使用方式不仅增加了代码复杂度,也使得维护变得困难。更严重的是,部分QuickJS API的使用方式存在理解偏差,可能导致潜在问题。
-
异常处理缺陷:直接调用QuickJS API产生的异常无法满足backend_quickjs的模拟需求。开发者不得不通过一些特殊逻辑来强行耦合backend_quickjs的异常实现,这种临时解决方案虽然能让单元测试通过,但却带来了严重的耦合问题——当backend_quickjs发生变动时,这部分代码就会失效。
重构方案
针对上述问题,开发团队提出了清晰的重构思路:
-
分离API实现:将原生的ExecuteModule实现完全分离,不再混用V8 API和QuickJS API。而是按照各自的回调形式分别实现两个版本,并注册到全局变量中。
-
统一调用接口:GetModuleExecutor从全局变量获取执行器,无论ExecuteModule是用哪种API实现,对其调用都相当于调用一个JavaScript函数,实现了接口的统一。
-
纯QuickJS实现:QuickJS后端的ExecuteModule完全采用QuickJS原生API的写法,消除了API混用带来的问题。
技术细节优化
在重构过程中,团队还纠正了对QuickJS API的一些误解,并进行了重要优化:
-
模块加载器初始化:明确了JS_SetModuleLoaderFunc只需要调用一次即可,避免了不必要的重复初始化。
-
模块规范化处理:认识到module_normalize参数不允许抛出JS异常这一重要限制。这意味着在module_normalize中产生的错误信息无法直接传递到module_loader。
-
异常处理改进:通过在LoadModule中使用JS_GetException判断是否在module_normalize中抛出了异常,实现了异常的重抛机制,从而在module_normalize中支持了异常处理。
重构效果
这次重构带来了多方面的改进:
-
代码清晰度提升:消除了API混用现象,代码结构更加清晰,维护成本显著降低。
-
稳定性增强:正确处理了QuickJS的异常机制,避免了之前因异常处理不当导致的潜在问题。
-
兼容性改善:解除了与backend_quickjs的强耦合,使得后端变动时模块系统仍能正常工作。
-
性能优化:通过正确的API使用方式和避免重复初始化,提升了模块加载的效率。
总结
Puerts项目对QuickJS后端模块系统的重构是一个典型的工程优化案例,它展示了如何通过深入理解底层API的特性和限制,来解决复杂的工程问题。这次重构不仅解决了眼前的技术债务,也为未来的功能扩展和维护奠定了更好的基础。对于使用Puerts框架的开发者来说,这意味着更稳定、更高效的模块系统体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00