Hi-FT/ERD项目中的自定义损失函数实践指南
2025-06-19 08:48:01作者:蔡丛锟
引言
在目标检测任务中,损失函数的设计直接影响模型的训练效果和最终性能。Hi-FT/ERD项目基于MMDetection框架,为用户提供了灵活的自定义损失函数机制。本文将深入解析损失函数的计算过程,并提供详细的修改指导,帮助开发者根据特定需求调整损失函数。
损失函数计算过程详解
损失函数的计算可以分解为五个关键步骤,理解这些步骤对于自定义损失至关重要:
- 采样方法设置:平衡正负样本分布
- 损失核函数应用:计算基础损失值
- 逐元素加权:调整单个样本或元素的权重
- 标量化归纳:将损失张量汇总为标量
- 整体权重调整:控制不同损失项的贡献度
采样方法配置
在目标检测中,正负样本不平衡是常见问题。Hi-FT/ERD提供了多种采样策略:
train_cfg=dict(
rpn=dict(
sampler=dict(
type='RandomSampler', # 随机采样器
num=256, # 采样总数
pos_fraction=0.5, # 正样本比例
neg_pos_ub=-1, # 负样本上限
add_gt_as_proposals=False))
技术要点:
- 对于Focal Loss等自带平衡机制的损失函数,通常不需要额外采样
- 采样策略直接影响模型对难易样本的学习侧重
- 正样本比例(pos_fraction)需要根据数据集特性调整
损失函数微调实战
1. 超参数调整
以Focal Loss为例,其核心超参数包括:
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=1.5, # 调节难易样本权重
alpha=0.5, # 类别平衡参数
loss_weight=1.0)
调参建议:
gamma
值增大,模型会更关注难分类样本alpha
值用于平衡类别分布,在类别不平衡数据集中尤为重要- 建议从小范围开始调整(如gamma=1.5-3.0),观察验证集效果
2. 归纳方式选择
损失归纳方式影响梯度更新行为:
reduction='sum' # 可选'max'、'none'等
选择策略:
mean
:默认选项,适合大多数场景sum
:当batch size较小时可能更稳定none
:保留完整损失矩阵,用于高级自定义操作
3. 损失权重调整
多任务学习中,不同损失项的权重配置示例:
loss_cls=dict(loss_weight=0.5), # 分类损失
loss_bbox=dict(loss_weight=1.0) # 回归损失
设计原则:
- 回归任务通常需要更高权重
- 关键任务(如安全相关)可适当提高权重
- 建议保持总权重和不变,通过比例调整
高级加权策略
Hi-FT/ERD支持更精细的逐元素加权:
def get_targets(self, ...):
# 生成label_weights和bbox_weights
return (labels, label_weights, bbox_targets, bbox_weights)
应用场景:
- 关键样本赋予更高权重
- 困难样本特殊处理
- 根据目标尺寸调整权重(如小物体检测)
最佳实践建议
- 渐进式调整:每次只修改一个参数,观察效果变化
- 验证集监控:重点关注验证集指标而非训练损失
- 组合实验:不同采样策略与损失函数的组合可能产生意外效果
- 可视化分析:通过损失曲线分析调整效果
通过合理调整损失函数,开发者可以显著提升Hi-FT/ERD模型在特定任务上的表现。建议从默认配置出发,根据实际需求逐步优化。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5