Hi-FT/ERD项目中的自定义损失函数实践指南
2025-06-19 21:54:49作者:蔡丛锟
引言
在目标检测任务中,损失函数的设计直接影响模型的训练效果和最终性能。Hi-FT/ERD项目基于MMDetection框架,为用户提供了灵活的自定义损失函数机制。本文将深入解析损失函数的计算过程,并提供详细的修改指导,帮助开发者根据特定需求调整损失函数。
损失函数计算过程详解
损失函数的计算可以分解为五个关键步骤,理解这些步骤对于自定义损失至关重要:
- 采样方法设置:平衡正负样本分布
 - 损失核函数应用:计算基础损失值
 - 逐元素加权:调整单个样本或元素的权重
 - 标量化归纳:将损失张量汇总为标量
 - 整体权重调整:控制不同损失项的贡献度
 
采样方法配置
在目标检测中,正负样本不平衡是常见问题。Hi-FT/ERD提供了多种采样策略:
train_cfg=dict(
    rpn=dict(
        sampler=dict(
            type='RandomSampler',  # 随机采样器
            num=256,              # 采样总数
            pos_fraction=0.5,     # 正样本比例
            neg_pos_ub=-1,        # 负样本上限
            add_gt_as_proposals=False))
技术要点:
- 对于Focal Loss等自带平衡机制的损失函数,通常不需要额外采样
 - 采样策略直接影响模型对难易样本的学习侧重
 - 正样本比例(pos_fraction)需要根据数据集特性调整
 
损失函数微调实战
1. 超参数调整
以Focal Loss为例,其核心超参数包括:
loss_cls=dict(
    type='FocalLoss',
    use_sigmoid=True,
    gamma=1.5,    # 调节难易样本权重
    alpha=0.5,    # 类别平衡参数
    loss_weight=1.0)
调参建议:
gamma值增大,模型会更关注难分类样本alpha值用于平衡类别分布,在类别不平衡数据集中尤为重要- 建议从小范围开始调整(如gamma=1.5-3.0),观察验证集效果
 
2. 归纳方式选择
损失归纳方式影响梯度更新行为:
reduction='sum'  # 可选'max'、'none'等
选择策略:
mean:默认选项,适合大多数场景sum:当batch size较小时可能更稳定none:保留完整损失矩阵,用于高级自定义操作
3. 损失权重调整
多任务学习中,不同损失项的权重配置示例:
loss_cls=dict(loss_weight=0.5),  # 分类损失
loss_bbox=dict(loss_weight=1.0)  # 回归损失
设计原则:
- 回归任务通常需要更高权重
 - 关键任务(如安全相关)可适当提高权重
 - 建议保持总权重和不变,通过比例调整
 
高级加权策略
Hi-FT/ERD支持更精细的逐元素加权:
def get_targets(self, ...):
    # 生成label_weights和bbox_weights
    return (labels, label_weights, bbox_targets, bbox_weights)
应用场景:
- 关键样本赋予更高权重
 - 困难样本特殊处理
 - 根据目标尺寸调整权重(如小物体检测)
 
最佳实践建议
- 渐进式调整:每次只修改一个参数,观察效果变化
 - 验证集监控:重点关注验证集指标而非训练损失
 - 组合实验:不同采样策略与损失函数的组合可能产生意外效果
 - 可视化分析:通过损失曲线分析调整效果
 
通过合理调整损失函数,开发者可以显著提升Hi-FT/ERD模型在特定任务上的表现。建议从默认配置出发,根据实际需求逐步优化。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446