Hi-FT/ERD项目中的自定义损失函数实践指南
2025-06-19 21:54:49作者:蔡丛锟
引言
在目标检测任务中,损失函数的设计直接影响模型的训练效果和最终性能。Hi-FT/ERD项目基于MMDetection框架,为用户提供了灵活的自定义损失函数机制。本文将深入解析损失函数的计算过程,并提供详细的修改指导,帮助开发者根据特定需求调整损失函数。
损失函数计算过程详解
损失函数的计算可以分解为五个关键步骤,理解这些步骤对于自定义损失至关重要:
- 采样方法设置:平衡正负样本分布
- 损失核函数应用:计算基础损失值
- 逐元素加权:调整单个样本或元素的权重
- 标量化归纳:将损失张量汇总为标量
- 整体权重调整:控制不同损失项的贡献度
采样方法配置
在目标检测中,正负样本不平衡是常见问题。Hi-FT/ERD提供了多种采样策略:
train_cfg=dict(
rpn=dict(
sampler=dict(
type='RandomSampler', # 随机采样器
num=256, # 采样总数
pos_fraction=0.5, # 正样本比例
neg_pos_ub=-1, # 负样本上限
add_gt_as_proposals=False))
技术要点:
- 对于Focal Loss等自带平衡机制的损失函数,通常不需要额外采样
- 采样策略直接影响模型对难易样本的学习侧重
- 正样本比例(pos_fraction)需要根据数据集特性调整
损失函数微调实战
1. 超参数调整
以Focal Loss为例,其核心超参数包括:
loss_cls=dict(
type='FocalLoss',
use_sigmoid=True,
gamma=1.5, # 调节难易样本权重
alpha=0.5, # 类别平衡参数
loss_weight=1.0)
调参建议:
gamma
值增大,模型会更关注难分类样本alpha
值用于平衡类别分布,在类别不平衡数据集中尤为重要- 建议从小范围开始调整(如gamma=1.5-3.0),观察验证集效果
2. 归纳方式选择
损失归纳方式影响梯度更新行为:
reduction='sum' # 可选'max'、'none'等
选择策略:
mean
:默认选项,适合大多数场景sum
:当batch size较小时可能更稳定none
:保留完整损失矩阵,用于高级自定义操作
3. 损失权重调整
多任务学习中,不同损失项的权重配置示例:
loss_cls=dict(loss_weight=0.5), # 分类损失
loss_bbox=dict(loss_weight=1.0) # 回归损失
设计原则:
- 回归任务通常需要更高权重
- 关键任务(如安全相关)可适当提高权重
- 建议保持总权重和不变,通过比例调整
高级加权策略
Hi-FT/ERD支持更精细的逐元素加权:
def get_targets(self, ...):
# 生成label_weights和bbox_weights
return (labels, label_weights, bbox_targets, bbox_weights)
应用场景:
- 关键样本赋予更高权重
- 困难样本特殊处理
- 根据目标尺寸调整权重(如小物体检测)
最佳实践建议
- 渐进式调整:每次只修改一个参数,观察效果变化
- 验证集监控:重点关注验证集指标而非训练损失
- 组合实验:不同采样策略与损失函数的组合可能产生意外效果
- 可视化分析:通过损失曲线分析调整效果
通过合理调整损失函数,开发者可以显著提升Hi-FT/ERD模型在特定任务上的表现。建议从默认配置出发,根据实际需求逐步优化。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8