Hi-FT/ERD项目自定义训练运行时配置详解
2025-06-19 16:49:09作者:郜逊炳
前言
在深度学习模型训练过程中,合理配置训练运行时参数对模型性能有着至关重要的影响。本文将深入讲解如何在Hi-FT/ERD项目中自定义训练配置,包括优化器设置、训练策略调整、训练循环定制以及钩子功能扩展等高级技巧。
优化器配置详解
基础优化器配置
Hi-FT/ERD项目采用OptimWrapper统一管理优化相关配置,主要包含三个核心部分:
- 优化器(optimizer):定义基础优化算法及参数
- 参数级配置(paramwise_cfg):实现不同参数组的差异化设置
- 梯度裁剪(clip_grad):控制梯度更新幅度
典型配置示例如下:
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='AdamW', # 使用AdamW优化器
lr=0.0001, # 基础学习率
weight_decay=0.05, # 权重衰减系数
eps=1e-8, # 数值稳定项
betas=(0.9, 0.999)), # 动量参数
paramwise_cfg=dict(
custom_keys={
'backbone': dict(lr_mult=0.1, decay_mult=1.0), # 主干网络学习率缩小10倍
},
norm_decay_mult=0.0), # 归一化层权重衰减系数
clip_grad=dict(max_norm=0.01, norm_type=2) # 梯度裁剪阈值
)
内置优化器使用
项目支持PyTorch所有原生优化器,只需简单修改配置即可切换。例如使用SGD优化器:
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
)
自定义优化器实现
当内置优化器无法满足需求时,可以扩展自定义优化器:
- 定义优化器类:继承
torch.optim.Optimizer并实现核心方法
from mmdet.registry import OPTIMIZERS
from torch.optim import Optimizer
@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):
def __init__(self, params, a, b, c, **kwargs):
# 实现初始化逻辑
pass
def step(self, closure=None):
# 实现参数更新逻辑
pass
-
注册优化器:确保模块被正确导入
- 方式一:修改
__init__.py文件显式导入 - 方式二:配置中通过
custom_imports动态导入
- 方式一:修改
-
配置使用:在optimizer域指定自定义优化器
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='MyOptimizer', a=1.0, b=0.5, c=0.1)
)
高级优化技巧
- 梯度裁剪:稳定训练过程
optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
- 动量调度:配合学习率调度加速收敛
param_scheduler = [
# 学习率调度
dict(type='CosineAnnealingLR', T_max=8, eta_min=lr*10),
# 动量调度
dict(type='CosineAnnealingMomentum', T_max=8, eta_min=0.85)
]
训练策略定制
学习率调度策略
项目支持多种学习率调整策略:
- 多项式衰减策略:
param_scheduler = [
dict(type='PolyLR', power=0.9, eta_min=1e-4, begin=0, end=8)
]
- 余弦退火策略:
param_scheduler = [
dict(type='CosineAnnealingLR', T_max=8, eta_min=lr*1e-5)
]
训练循环配置
支持两种基础训练循环模式:
- 基于轮次的循环(EpochBasedTrainLoop):
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12)
- 基于迭代的循环(IterBasedTrainLoop):
train_cfg = dict(
type='IterBasedTrainLoop',
max_iters=368750,
val_interval=5000,
dynamic_intervals=[(365001, 368750)] # 动态调整验证间隔
)
钩子功能扩展
自定义钩子实现
- 定义钩子类:继承
Hook基类并实现所需方法
from mmengine.hooks import Hook
from mmdet.registry import HOOKS
@HOOKS.register_module()
class MyHook(Hook):
def __init__(self, a, b):
pass
def before_train_epoch(self, runner):
# 训练epoch前执行逻辑
pass
def after_train_iter(self, runner, batch_idx, data_batch, outputs):
# 训练迭代后执行逻辑
pass
- 注册与使用:
custom_hooks = [
dict(type='MyHook', a=1, b=2, priority='NORMAL')
]
内置钩子配置
- 模型检查点钩子:
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=1,
max_keep_ckpts=3, # 最多保留3个检查点
save_optimizer=True # 保存优化器状态
)
)
- 日志记录钩子:
default_hooks = dict(
logger=dict(type='LoggerHook', interval=50) # 每50次迭代记录一次
)
- 可视化钩子:
default_hooks = dict(
visualization=dict(type='DetVisualizationHook', draw=True)
)
vis_backends = [
dict(type='LocalVisBackend'), # 本地可视化
dict(type='TensorboardVisBackend') # TensorBoard支持
]
结语
通过本文的详细介绍,相信您已经掌握了在Hi-FT/ERD项目中自定义训练运行时的各项高级技巧。合理配置优化策略、训练循环和监控钩子,可以显著提升模型训练效率和最终性能。建议根据具体任务需求,灵活组合文中介绍的各种配置方法,找到最适合您项目的训练方案。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 Jetson TX2开发板官方资源完全指南:从入门到精通 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
702
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1