Hi-FT/ERD项目自定义训练运行时配置详解
2025-06-19 22:52:23作者:郜逊炳
前言
在深度学习模型训练过程中,合理配置训练运行时参数对模型性能有着至关重要的影响。本文将深入讲解如何在Hi-FT/ERD项目中自定义训练配置,包括优化器设置、训练策略调整、训练循环定制以及钩子功能扩展等高级技巧。
优化器配置详解
基础优化器配置
Hi-FT/ERD项目采用OptimWrapper统一管理优化相关配置,主要包含三个核心部分:
- 优化器(optimizer):定义基础优化算法及参数
- 参数级配置(paramwise_cfg):实现不同参数组的差异化设置
- 梯度裁剪(clip_grad):控制梯度更新幅度
典型配置示例如下:
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='AdamW', # 使用AdamW优化器
lr=0.0001, # 基础学习率
weight_decay=0.05, # 权重衰减系数
eps=1e-8, # 数值稳定项
betas=(0.9, 0.999)), # 动量参数
paramwise_cfg=dict(
custom_keys={
'backbone': dict(lr_mult=0.1, decay_mult=1.0), # 主干网络学习率缩小10倍
},
norm_decay_mult=0.0), # 归一化层权重衰减系数
clip_grad=dict(max_norm=0.01, norm_type=2) # 梯度裁剪阈值
)
内置优化器使用
项目支持PyTorch所有原生优化器,只需简单修改配置即可切换。例如使用SGD优化器:
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
)
自定义优化器实现
当内置优化器无法满足需求时,可以扩展自定义优化器:
- 定义优化器类:继承
torch.optim.Optimizer并实现核心方法
from mmdet.registry import OPTIMIZERS
from torch.optim import Optimizer
@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):
def __init__(self, params, a, b, c, **kwargs):
# 实现初始化逻辑
pass
def step(self, closure=None):
# 实现参数更新逻辑
pass
-
注册优化器:确保模块被正确导入
- 方式一:修改
__init__.py文件显式导入 - 方式二:配置中通过
custom_imports动态导入
- 方式一:修改
-
配置使用:在optimizer域指定自定义优化器
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='MyOptimizer', a=1.0, b=0.5, c=0.1)
)
高级优化技巧
- 梯度裁剪:稳定训练过程
optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
- 动量调度:配合学习率调度加速收敛
param_scheduler = [
# 学习率调度
dict(type='CosineAnnealingLR', T_max=8, eta_min=lr*10),
# 动量调度
dict(type='CosineAnnealingMomentum', T_max=8, eta_min=0.85)
]
训练策略定制
学习率调度策略
项目支持多种学习率调整策略:
- 多项式衰减策略:
param_scheduler = [
dict(type='PolyLR', power=0.9, eta_min=1e-4, begin=0, end=8)
]
- 余弦退火策略:
param_scheduler = [
dict(type='CosineAnnealingLR', T_max=8, eta_min=lr*1e-5)
]
训练循环配置
支持两种基础训练循环模式:
- 基于轮次的循环(EpochBasedTrainLoop):
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12)
- 基于迭代的循环(IterBasedTrainLoop):
train_cfg = dict(
type='IterBasedTrainLoop',
max_iters=368750,
val_interval=5000,
dynamic_intervals=[(365001, 368750)] # 动态调整验证间隔
)
钩子功能扩展
自定义钩子实现
- 定义钩子类:继承
Hook基类并实现所需方法
from mmengine.hooks import Hook
from mmdet.registry import HOOKS
@HOOKS.register_module()
class MyHook(Hook):
def __init__(self, a, b):
pass
def before_train_epoch(self, runner):
# 训练epoch前执行逻辑
pass
def after_train_iter(self, runner, batch_idx, data_batch, outputs):
# 训练迭代后执行逻辑
pass
- 注册与使用:
custom_hooks = [
dict(type='MyHook', a=1, b=2, priority='NORMAL')
]
内置钩子配置
- 模型检查点钩子:
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=1,
max_keep_ckpts=3, # 最多保留3个检查点
save_optimizer=True # 保存优化器状态
)
)
- 日志记录钩子:
default_hooks = dict(
logger=dict(type='LoggerHook', interval=50) # 每50次迭代记录一次
)
- 可视化钩子:
default_hooks = dict(
visualization=dict(type='DetVisualizationHook', draw=True)
)
vis_backends = [
dict(type='LocalVisBackend'), # 本地可视化
dict(type='TensorboardVisBackend') # TensorBoard支持
]
结语
通过本文的详细介绍,相信您已经掌握了在Hi-FT/ERD项目中自定义训练运行时的各项高级技巧。合理配置优化策略、训练循环和监控钩子,可以显著提升模型训练效率和最终性能。建议根据具体任务需求,灵活组合文中介绍的各种配置方法,找到最适合您项目的训练方案。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0130
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
495
3.63 K
Ascend Extension for PyTorch
Python
300
336
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
475
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
301
127
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
871