GLM-4模型微调中的Loss收敛问题分析与解决方案
2025-06-03 02:27:02作者:廉彬冶Miranda
问题背景
在使用GLM-4模型进行LoRA微调时,开发者发现当使用极少量训练样本(如2条)时,模型的训练损失(loss)会降低到0.2左右后停滞不前,无法进一步收敛到接近0的水平。这一现象在常规认知中显得异常,因为理论上对于如此少量的样本,模型应该能够完全拟合训练数据,使loss趋近于0。
问题分析
经过深入排查,发现问题根源在于数据准备阶段对特殊token的处理不当。具体来说:
- 特殊token预测问题:原始代码中包含了
<|assistant|>这个特殊token的预测任务,但这个token本身无法被模型有效拟合 - 损失函数计算:由于这个特殊token始终无法被正确预测,导致损失函数中存在一个固定的"基底"损失值
- 梯度异常:从训练日志中可以看到梯度范数(grad_norm)波动异常,时而很大(如32.75),时而又很小(如0.01),表明训练过程不稳定
解决方案
针对这一问题,可以通过以下方式解决:
- 修改数据预处理代码:在准备训练数据时,应正确设置标签掩码(label mask),避免对特殊token进行预测
- 调整损失计算范围:确保损失函数只计算需要模型学习预测的部分,而非所有token
- 验证数据格式:检查输入数据的格式是否符合GLM-4模型的预期,特别是对话标记的处理
技术启示
这一问题的解决过程为我们提供了几个重要的技术启示:
- 特殊token处理:在使用类似GLM-4这样的对话模型时,必须特别注意特殊token的处理方式,它们通常不应该作为预测目标
- 小样本调试:使用极小训练集进行调试时,预期结果应该是模型能够完全拟合(过拟合)训练数据,如果无法实现,往往表明实现存在问题
- 训练监控:除了关注loss值外,还应监控梯度范数等指标,它们能提供训练过程稳定性的重要信息
最佳实践建议
基于这一经验,建议开发者在进行GLM-4模型微调时:
- 仔细检查数据预处理流程,确保特殊token得到正确处理
- 在小规模数据上先验证模型能否完全拟合,作为实现正确性的基本测试
- 监控训练过程中的各项指标,包括但不限于loss、梯度、学习率等
- 参考官方实现或社区公认的最佳实践,避免自行实现时遗漏关键细节
通过正确处理数据准备阶段的特殊token问题,开发者可以确保GLM-4模型在微调过程中能够正常收敛,即使在极少量训练样本的情况下也能达到预期的拟合效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.45 K
Ascend Extension for PyTorch
Python
272
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
192
79
暂无简介
Dart
714
171
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692