GLM-4微调过程中Loss为0的问题分析与解决方案
2025-06-03 16:32:54作者:郦嵘贵Just
问题现象
在使用GLM-4进行微调训练时,开发者可能会遇到一个特殊现象:训练过程中的Loss值持续显示为0,同时梯度范数(grad_norm)也为0。从日志记录中可以看到,尽管学习率在正常变化,但模型似乎没有进行有效的学习。
问题根源分析
经过深入排查,发现这个问题主要源于数据处理阶段的一个关键细节。在原始代码中,使用tokenizer处理输入数据时,返回的new_input_ids可能为空列表,导致模型无法获取有效的训练信号。
具体来说,当使用tokenizer.apply_chat_template方法处理输入消息时,原始代码直接使用了返回结果,而没有正确处理返回的数据结构。这会导致两种情况:
- 返回的token序列被截断
- 返回的token序列结构不正确
解决方案
针对这个问题,有两种可行的解决方案:
方案一:调整tokenizer处理方式
修改tokenizer.apply_chat_template的调用方式,确保获取完整的token序列:
new_input_ids = tokenizer.apply_chat_template([message], tokenize=True, return_dict=False)[0][2:]
这个修改做了两件事:
- 明确指定return_dict=False,确保返回的是token序列而非字典
- 通过[0][2:]获取正确的token序列部分
方案二:调整模型配置参数
另一种方法是检查并调整模型的最大长度(max_length)配置,确保其足够长以容纳完整的输入序列。在大多数情况下,GLM-4的默认配置已经足够,但如果遇到特殊的长文本场景,可以适当增加这个参数值。
技术原理深入
为什么会出现Loss为0的情况?这实际上反映了模型在训练过程中没有接收到有效的梯度信号。当输入序列被错误处理时,可能导致:
- 输入特征全为0或padding值
- 标签序列被错误截断
- 模型无法建立输入与输出之间的有效关联
在深度学习训练中,Loss为0通常不是好现象,它可能意味着:
- 数据预处理存在问题
- 模型参数没有被正确更新
- 梯度消失问题
最佳实践建议
为了避免类似问题,建议开发者在进行GLM-4微调时:
- 在训练前检查数据处理流程,验证tokenizer的输出是否符合预期
- 添加中间日志,打印关键步骤的处理结果
- 对于自定义数据集,先在小样本上测试训练流程
- 监控训练过程中的各项指标,包括但不限于Loss、梯度范数、学习率等
总结
GLM-4作为强大的语言模型,其微调过程需要开发者注意数据处理细节。Loss为0的问题虽然看似简单,但反映了数据处理流程中的关键环节。通过正确配置tokenizer参数或调整模型输入长度,可以有效解决这一问题,确保模型能够正常学习和收敛。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133