GLM-4微调过程中Loss为0的问题分析与解决方案
2025-06-03 20:48:46作者:郦嵘贵Just
问题现象
在使用GLM-4进行微调训练时,开发者可能会遇到一个特殊现象:训练过程中的Loss值持续显示为0,同时梯度范数(grad_norm)也为0。从日志记录中可以看到,尽管学习率在正常变化,但模型似乎没有进行有效的学习。
问题根源分析
经过深入排查,发现这个问题主要源于数据处理阶段的一个关键细节。在原始代码中,使用tokenizer处理输入数据时,返回的new_input_ids可能为空列表,导致模型无法获取有效的训练信号。
具体来说,当使用tokenizer.apply_chat_template方法处理输入消息时,原始代码直接使用了返回结果,而没有正确处理返回的数据结构。这会导致两种情况:
- 返回的token序列被截断
- 返回的token序列结构不正确
解决方案
针对这个问题,有两种可行的解决方案:
方案一:调整tokenizer处理方式
修改tokenizer.apply_chat_template的调用方式,确保获取完整的token序列:
new_input_ids = tokenizer.apply_chat_template([message], tokenize=True, return_dict=False)[0][2:]
这个修改做了两件事:
- 明确指定return_dict=False,确保返回的是token序列而非字典
- 通过[0][2:]获取正确的token序列部分
方案二:调整模型配置参数
另一种方法是检查并调整模型的最大长度(max_length)配置,确保其足够长以容纳完整的输入序列。在大多数情况下,GLM-4的默认配置已经足够,但如果遇到特殊的长文本场景,可以适当增加这个参数值。
技术原理深入
为什么会出现Loss为0的情况?这实际上反映了模型在训练过程中没有接收到有效的梯度信号。当输入序列被错误处理时,可能导致:
- 输入特征全为0或padding值
- 标签序列被错误截断
- 模型无法建立输入与输出之间的有效关联
在深度学习训练中,Loss为0通常不是好现象,它可能意味着:
- 数据预处理存在问题
- 模型参数没有被正确更新
- 梯度消失问题
最佳实践建议
为了避免类似问题,建议开发者在进行GLM-4微调时:
- 在训练前检查数据处理流程,验证tokenizer的输出是否符合预期
- 添加中间日志,打印关键步骤的处理结果
- 对于自定义数据集,先在小样本上测试训练流程
- 监控训练过程中的各项指标,包括但不限于Loss、梯度范数、学习率等
总结
GLM-4作为强大的语言模型,其微调过程需要开发者注意数据处理细节。Loss为0的问题虽然看似简单,但反映了数据处理流程中的关键环节。通过正确配置tokenizer参数或调整模型输入长度,可以有效解决这一问题,确保模型能够正常学习和收敛。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
428
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
345
Ascend Extension for PyTorch
Python
236
270
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
71
36
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669