ChatGLM3多卡微调问题分析与解决方案
问题背景
在使用ChatGLM3进行模型微调时,许多开发者遇到了多卡训练模式下不输出结果的问题。具体表现为:当使用torchrun启动多卡训练时,程序很快显示"训练成功",但实际上没有生成预期的checkpoint输出文件,同时在日志中会出现关于deepspeed配置文件未保存的警告信息。
问题原因分析
经过技术分析,这个问题主要由以下几个因素导致:
-
参数解析错误:最新版本的finetune_hf.py脚本已经不再直接接受deepspeed配置文件作为命令行参数。当用户仍然在命令中传入ds_zero_2.json路径时,该参数会被错误地解析为checkpoint路径,导致程序跳过训练阶段。
-
配置文件路径问题:在多卡环境下,相对路径的解析可能出现问题,导致程序无法正确找到deepspeed配置文件。
-
训练流程异常:由于上述原因,程序实际上执行的是评估(evaluate)流程而非训练(training)流程,因此不会生成预期的模型输出。
解决方案
正确配置方法
-
修改lora.yaml配置文件: 打开configs/lora.yaml文件,找到关于deepspeed的配置部分(通常在38行附近),取消注释并修改为绝对路径:
deepspeed: /your/absolute/path/to/ds_zero_2.json -
使用简化命令: 执行训练时,只需传入三个必要参数:
OMP_NUM_THREADS=1 torchrun --standalone --nnodes=1 --nproc_per_node=2 finetune_hf.py \ /path/to/your/data/ \ /path/to/chatglm3-6b/ \ /path/to/configs/lora.yaml
注意事项
-
路径规范:建议所有路径都使用绝对路径,避免在多卡环境下出现路径解析问题。
-
输出检查:训练完成后,应在output目录下检查是否生成了预期的checkpoint文件。正常情况应该会生成类似checkpoint-3000这样的目录。
-
推理使用:微调完成后进行推理时,应指定正确的checkpoint路径:
CUDA_VISIBLE_DEVICES=1 python inference_hf.py output/checkpoint-3000/ --prompt
技术原理
这个问题涉及到PyTorch分布式训练的几个关键点:
-
Deepspeed集成:ChatGLM3使用Deepspeed来优化多卡训练,但配置方式已经从命令行参数改为通过yaml文件配置。
-
分布式训练初始化:torchrun会自动处理多进程的启动和通信,但各进程需要能够访问相同的配置文件。
-
模型保存机制:在多卡环境下,模型保存通常由主进程负责,其他进程会跳过保存步骤以避免冲突。
最佳实践建议
-
环境检查:在开始训练前,先使用单卡模式验证数据和配置是否正确。
-
日志监控:训练过程中应监控日志输出,确认实际执行的是训练流程而非评估流程。
-
资源分配:根据显存大小合理设置batch size,多卡训练时可以适当增大总batch size。
-
版本兼容性:注意检查ChatGLM3的版本更新,及时调整训练脚本以适应API变化。
通过以上方法和注意事项,开发者可以顺利地在多卡环境下完成ChatGLM3的微调任务,并获得预期的模型输出结果。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00