Liger-Kernel项目中logits数据类型转换的优化实践
2025-06-10 17:54:43作者:段琳惟
背景介绍
在深度学习模型训练过程中,交叉熵损失函数的计算是一个关键操作。Liger-Kernel项目中的fused_linear_cross_entropy.py文件实现了一个融合的线性层和交叉熵损失计算内核,旨在提高训练效率。在原始实现中,开发者对logits数据类型进行了显式的向上转换(upcasting)操作,这一设计引起了社区成员的关注和讨论。
问题发现
技术专家yzhangcs在代码审查中发现,内核内部已经包含了fp32的向上转换操作,而外部又进行了额外的数据类型转换。通过实验验证,他确认移除这些冗余的转换操作不会导致精度损失。这一发现引发了对现有实现合理性的深入探讨。
技术验证
为了验证这一发现,yzhangcs设计了严谨的测试方案:
- 创建随机生成的输入张量(x)、目标(target)、权重(weight)和偏置(bias)
- 分别使用标准PyTorch实现和Liger-Kernel的融合实现计算损失和梯度
- 比较两种实现输出的差异
测试结果显示,移除外部转换后,两种实现的输出差异极小:
- 损失值最大差异:0.0005
- 梯度差异:在1e-7量级
性能优化探索
在后续的深入研究中,yzhangcs还发现了一个更重要的优化点:对于大词汇表(V)和小隐藏层(H)的情况,现有的分块(chunking)策略可能导致数值精度问题。他提出:
- 限制最大分块数量,如设置inv_factor为min(8, triton.cdiv(V/H))
- 通过实验证明8个分块在128K词汇表情况下能获得更好的性能
实际训练验证
为了验证这些优化在实际训练中的效果,yzhangcs进行了大规模实验:
- 模型规模:370M参数
- 训练数据:10B tokens
- 上下文长度:8K
- 词汇表:32K
实验结果令人惊喜:
- 8分块策略获得了最低的困惑度(12.70)
- 同时保持了最高的吞吐量(109.54 K tokens/sec)
- 原始V/H分块策略(32分块)表现最差
技术实现改进
基于这些发现,项目维护者ByronHsu采纳了建议,将数据类型转换操作完全移入内核内部实现。这一改进:
- 简化了代码结构,消除了冗余操作
- 保持了数值精度
- 为后续优化提供了更清晰的基础
总结与启示
这一优化过程展示了深度学习系统开发中的几个重要原则:
- 不要盲目遵循现有实现:即使是为了保持与HuggingFace的一致性,也需要验证其必要性
- 实证精神至关重要:通过严谨的实验验证假设,而不是依赖直觉
- 性能优化需要全面考虑:不仅要看计算速度,还要关注内存使用和数值稳定性
- 实际训练验证不可替代:微观基准测试的结果需要通过大规模训练来确认
这一案例为深度学习框架优化提供了宝贵经验,特别是在处理大词汇表语言模型训练时的内存效率和计算精度平衡问题上。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19