Liger-Kernel项目中logits数据类型转换的优化实践
2025-06-10 17:54:43作者:段琳惟
背景介绍
在深度学习模型训练过程中,交叉熵损失函数的计算是一个关键操作。Liger-Kernel项目中的fused_linear_cross_entropy.py文件实现了一个融合的线性层和交叉熵损失计算内核,旨在提高训练效率。在原始实现中,开发者对logits数据类型进行了显式的向上转换(upcasting)操作,这一设计引起了社区成员的关注和讨论。
问题发现
技术专家yzhangcs在代码审查中发现,内核内部已经包含了fp32的向上转换操作,而外部又进行了额外的数据类型转换。通过实验验证,他确认移除这些冗余的转换操作不会导致精度损失。这一发现引发了对现有实现合理性的深入探讨。
技术验证
为了验证这一发现,yzhangcs设计了严谨的测试方案:
- 创建随机生成的输入张量(x)、目标(target)、权重(weight)和偏置(bias)
- 分别使用标准PyTorch实现和Liger-Kernel的融合实现计算损失和梯度
- 比较两种实现输出的差异
测试结果显示,移除外部转换后,两种实现的输出差异极小:
- 损失值最大差异:0.0005
- 梯度差异:在1e-7量级
性能优化探索
在后续的深入研究中,yzhangcs还发现了一个更重要的优化点:对于大词汇表(V)和小隐藏层(H)的情况,现有的分块(chunking)策略可能导致数值精度问题。他提出:
- 限制最大分块数量,如设置inv_factor为min(8, triton.cdiv(V/H))
- 通过实验证明8个分块在128K词汇表情况下能获得更好的性能
实际训练验证
为了验证这些优化在实际训练中的效果,yzhangcs进行了大规模实验:
- 模型规模:370M参数
- 训练数据:10B tokens
- 上下文长度:8K
- 词汇表:32K
实验结果令人惊喜:
- 8分块策略获得了最低的困惑度(12.70)
- 同时保持了最高的吞吐量(109.54 K tokens/sec)
- 原始V/H分块策略(32分块)表现最差
技术实现改进
基于这些发现,项目维护者ByronHsu采纳了建议,将数据类型转换操作完全移入内核内部实现。这一改进:
- 简化了代码结构,消除了冗余操作
- 保持了数值精度
- 为后续优化提供了更清晰的基础
总结与启示
这一优化过程展示了深度学习系统开发中的几个重要原则:
- 不要盲目遵循现有实现:即使是为了保持与HuggingFace的一致性,也需要验证其必要性
- 实证精神至关重要:通过严谨的实验验证假设,而不是依赖直觉
- 性能优化需要全面考虑:不仅要看计算速度,还要关注内存使用和数值稳定性
- 实际训练验证不可替代:微观基准测试的结果需要通过大规模训练来确认
这一案例为深度学习框架优化提供了宝贵经验,特别是在处理大词汇表语言模型训练时的内存效率和计算精度平衡问题上。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137