Liger-Kernel项目中logits数据类型转换的优化实践
2025-06-10 00:09:30作者:段琳惟
背景介绍
在深度学习模型训练过程中,交叉熵损失函数的计算是一个关键操作。Liger-Kernel项目中的fused_linear_cross_entropy.py文件实现了一个融合的线性层和交叉熵损失计算内核,旨在提高训练效率。在原始实现中,开发者对logits数据类型进行了显式的向上转换(upcasting)操作,这一设计引起了社区成员的关注和讨论。
问题发现
技术专家yzhangcs在代码审查中发现,内核内部已经包含了fp32的向上转换操作,而外部又进行了额外的数据类型转换。通过实验验证,他确认移除这些冗余的转换操作不会导致精度损失。这一发现引发了对现有实现合理性的深入探讨。
技术验证
为了验证这一发现,yzhangcs设计了严谨的测试方案:
- 创建随机生成的输入张量(x)、目标(target)、权重(weight)和偏置(bias)
- 分别使用标准PyTorch实现和Liger-Kernel的融合实现计算损失和梯度
- 比较两种实现输出的差异
测试结果显示,移除外部转换后,两种实现的输出差异极小:
- 损失值最大差异:0.0005
- 梯度差异:在1e-7量级
性能优化探索
在后续的深入研究中,yzhangcs还发现了一个更重要的优化点:对于大词汇表(V)和小隐藏层(H)的情况,现有的分块(chunking)策略可能导致数值精度问题。他提出:
- 限制最大分块数量,如设置inv_factor为min(8, triton.cdiv(V/H))
- 通过实验证明8个分块在128K词汇表情况下能获得更好的性能
实际训练验证
为了验证这些优化在实际训练中的效果,yzhangcs进行了大规模实验:
- 模型规模:370M参数
- 训练数据:10B tokens
- 上下文长度:8K
- 词汇表:32K
实验结果令人惊喜:
- 8分块策略获得了最低的困惑度(12.70)
- 同时保持了最高的吞吐量(109.54 K tokens/sec)
- 原始V/H分块策略(32分块)表现最差
技术实现改进
基于这些发现,项目维护者ByronHsu采纳了建议,将数据类型转换操作完全移入内核内部实现。这一改进:
- 简化了代码结构,消除了冗余操作
- 保持了数值精度
- 为后续优化提供了更清晰的基础
总结与启示
这一优化过程展示了深度学习系统开发中的几个重要原则:
- 不要盲目遵循现有实现:即使是为了保持与HuggingFace的一致性,也需要验证其必要性
- 实证精神至关重要:通过严谨的实验验证假设,而不是依赖直觉
- 性能优化需要全面考虑:不仅要看计算速度,还要关注内存使用和数值稳定性
- 实际训练验证不可替代:微观基准测试的结果需要通过大规模训练来确认
这一案例为深度学习框架优化提供了宝贵经验,特别是在处理大词汇表语言模型训练时的内存效率和计算精度平衡问题上。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444